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Preface

Dear Reader,
This textbook for newcomers who are interested in quantum computing as a po-

tential career, but who may not be ready for advanced books or courses. The only
prerequisite for this book is trigonometry, also called pre-calculus. You are not ex-
pected to have taken advanced math beyond that, and you are not expected to have
experience with programming. So, if you are an advanced high school student or a
beginning university student, this textbook is for you.

That said, this book is not merely a conceptual overview of quantum computing.
I will teach the math and programming skills that may be missing. Since you are
interested in quantum computing as a potential career, I want to equip you with the
skills you will need for more advanced topics.

If you are more advanced, and especially if you have already studied linear al-
gebra, then you may find this textbook too elementary. For a more mathematically
rigorous introduction to quantum information science, I refer you to Quantum Com-
putation and Quantum Information by Michael Nielsen and Isaac Chuang, affec-
tionately called “Mike and Ike,” like the chewy, fruit candy with the same name. It
is the standard advanced text, and for good reason.

I hope this textbook will help you realize that you can do it, that you can under-
stand quantum computing. I hope it will inspire you to study quantum computing
more deeply, and I hope that some of you might even choose quantum computing
as a career. If so, I look forward to calling you colleagues and learning from your
discoveries.

This textbook stemmed from an introductory special-topics course that I taught
at Creighton University, and I thank each class of students for sharing the journey of
developing and refining the course content. I must also thank those who have taught
me quantum computing in both formal and informal roles. I could not have done it
without you.

Tom Wong
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Chapter 1
Classical Information and Computation

Computers have come a long way. The first computers were people, not machines,
who performed calculations. Indeed, the term “computer” dates as far back as the
early 1600’s, centuries before the digital age. Human computers persisted into mod-
ern history, with NASA, for example employing people to compute launch trajec-
tories for the space program and other scientific endeavors through the 1960’s. Of
course, mechanical and then electronic computers have since taken over, evolving
from massive machines that filled entire rooms, to personal computers on our desk-
tops, to smaller and smaller devices. Now, nearly everyone has a electronic com-
puter in their pocket—a smartphone—that is more powerful than the computers that
landed people on the moon. Computers have become so polished that we can use
and even program them without understanding how they work at a fundamental
level. That’s not a bad thing. It has allowed computers to become tools for more and
more people. My physics students can perform numerical computations and solve
scientific problems without needing to understand bits and bytes.

One day, quantum computing will get to this point of accessibility, where we can
use and program them without worrying about their details. But we are not quite
there, yet. In their development, quantum computers are where classical computers
were decades ago. Their inner working still matter, and to understand these inner
workings, it is helpful to understand the inner workings of regular, classical com-
puters. So, in this chapter, we will look at the basics of classical computing. If you
have studied the fundamentals of classical computing or electrical engineering, this
may be review for you. Even so, the topics may be worth seeing again because they
have been carefully selected for their quantum analogues in later chapters.

Furthermore, quantum computing is not developing in isolation of classical com-
puting. Many of the design decisions for quantum computers stem out of what is
done with classical computers. Without knowing classical computing, some aspect
of quantum computing may seem arbitrary. A rudimentary understanding classical
computing makes it easier to understand quantum computing.

The following table lists many of the concepts we will be covering in this book.

1
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Concept Classical Quantum

Fundamental Unit Bit Qubit
Gates Logic Gates Unitary Gates
Gates Reversible Sometimes Always
Universal Gate Set (Example) {NAND} {H,T,CNOT}
Programming Language (Example) Verilog OpenQASM
Algebra Boolean Linear
Error Correcting Code (Example) Repetition Code Shor Code
Complexity Class P BQP
Strong Church-Turing Thesis Supports Possibly Violates

In this chapter, we will cover the “Classical” column, beginning with bits. Then,
we will perform computation on these bits using logic gates and include discus-
sions about universal and reversible logic gates. The math of classical computing is
boolean algebra, and we can program classical circuits using hardware description
languages. We will then look at classes of problems that are easy or hard for com-
puters, and we will end this chapter with the prospect that quantum computers may
be significantly faster than classical computers at some tasks. In the rest of the book,
we will cover the quantum computing column of the table.

1.1 Bits

The term bits has become fairly commonplace, where many people will state that
bits are zeros and ones. Whether you already knew that does not matter. The point
is, have we taken a moment to consider what bits really are? Are they just numbers?
Why are they important for computers? Let us begin our journey by exploring bits
deeply.

1.1.1 Coins

Consider a coin, such as the United States one-cent penny from 2016, which features
former President Abraham Lincoln as “heads” and the Union shield as “tails.”

Assuming that coins do not balance on their edges, a single coin lying on a flat
surface either has heads facing up or tails facing up. Let us call these two possible
conditions, or states, heads (H) and tails (T).
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If we have two coins, there are four possible states: Both coins can be heads
(HH), the first can be heads and the second can be tails (HT), the first can be tails
and the second can be heads (TH), or both can be tails (TT). That is, the possible
states are:

HH, HT, TH, TT.

Since the first coin has two possible states (heads or tails), and the second coin has
two possible states (heads or tails), there are 2× 2 = 22 = 4 possible states for the
two coins.

Adding a third coin, there are now eight possible states. They could all be heads,
some mixture of heads and tails, or all tails. Listing all the permutations, the possible
states are now

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT.

Since each of the three coins has two possible states, there are 2× 2× 2 = 23 = 8
possible states for three coins.

Generalizing this, if we have n coins, the possible states range from all heads,
through a mixture of heads and tails, to all tails:

H . . . HH, H . . . HT, . . . , T . . . TT.

With n coins, there are 2n possible states.

Exercise 1.1. How many possible states do (a) four coins have? (b) five coins? You do not need to
list the states, just how many there are.

1.1.2 Dice

In contrast, consider a standard six-sided die.

It has six possible outcomes, the numbers 1 through 6. So, the possible states of a
die are

1,2,3,4,5,6.

Next, say we have two dice. Each die can take the values 1 through 6, so both
could be 1, the first could be 1 and the second could be 2, and so forth. If the first
die is 3 and the second is 5, let us write the configuration as (3,5). Then, listing all
of these, the possible states of two dice are



4 1 Classical Information and Computation

(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),
(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),
(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),
(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),
(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),
(6,1),(6,2),(6,3),(6,4),(6,5),(6,6).

Since each die has six possible states, there are 6×6 = 62 = 36 possible states for
the two dice.

Following the pattern, with three dice, there are 63 = 216 possible states. Listing
these would take too much space. Generalizing, with n dice, there are 6n possible
states.

Exercise 1.2. How many possible states do (a) four dice have? (b) five dice? You do not need to
list the states, just how many there are. A calculator may be useful.

1.1.3 Encoding Information

Now, how much information can coins and dice carry? Say I am trying to com-
municate the colors of the rainbow, which in the United States are typically listed
as red, orange, yellow, green, blue, indigo, and violet.1 These seven colors can be
represented, or encoded, by the possible configurations of three coins or two dice:

Color Coins Dice

Red HHH (1,1)
Orange HHT (1,2)
Yellow HTH (1,3)
Green HTT (1,4)
Blue THH (1,5)

Indigo THT (1,6)
Violet TTH (2,1)

So, if I give you three coins, first heads then tails and then tails again, you can
decode it and determine the color green. Alternatively, I can give you two dice, the
first 1 and the second 4, to indicate the color green. In this example, the rest of the
configurations (TTT for the coin, and (2,2) through (6,6) for the dice) are unused and
do not mean anything, or they can be assigned to the same colors so that multiple
states can encode green, for example.

We see that a coin carries less information than a die; it takes three coins to
distinguish the seven colors of the rainbow, compared to two dice. This is because a

1 In American elementary schools, many students memorize this by taking the first letter of each
color and combining them into the acronym ROY G. BIV.
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coin can only distinguish between two states (heads and tails), while a die is able to
distinguish between six states (1 through 6). Since two states is the fewest number
of states that can be distinguished, a coin carries the smallest amount of information
possible. This leads us the following idea:

Something with two states carries the
smallest amount of information possible.

Exercise 1.3. Some board games use a twenty-sided die. How many twenty-sided dice does it take
to encode the seven colors of the rainbow?

Exercise 1.4. How many (a) coins and (b) six-sided dice would it take to represent the 26 letters
of the English alphabet? Ignore upper and lowercase, spaces, punctuation, etc., so there’s only 26
letters total.

1.1.4 Physical Bits

Many physical systems only have two states. We already discussed coins, which
can be heads or tails. Another example is a light switch, which can be “off” or
“on.” As another example, information is stored on optical discs (e.g., CDs, DVDs,
and Blu-ray discs) using a laser that burns holes into the disc, called “pits.” For
example, one of my students took a zoomed-in picture of a DVD using an atomic
force microscope, shown below:

Image credit: Jeffrey Y. Wong, Creighton University, taken August 24, 2018

The picture shows microscopic holes and trenches burned into the disc, i.e., the pits.
Where there is no hole is called a “land.” So, the two states are whether there is a pit
or a land, and to read the disc, a laser shines on the disc and detects whether there is
a pit or a land.

Physical systems with more than two possible states can be treated as only having
two if we simply ignore the rest of the possible states. For example, if I have an
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electronic circuit, then many different voltage levels are possible.2 In conventional
computers, however, we typically only use two values, 0 volts and 5 volts, so we
effectively only have two states.

All of these examples have, or effectively have, just two states, called by differ-
ent names: heads/tails, off/on, pits/lands, and 0 V / 5 V. Rather than using so many
different names, it is often easier to use generic names for the two states so that we
can describe the state without regard for the underlying physical system. Mathemat-
ically, it is convenient to use the binary digits 0 and 1. This is summarized in the
table below

Physical System States

Coin Heads Tails
Switch Off On
Disc Pit Land

Voltage 0 V 5 V

Binary Digit 0 1

With this convention, regardless of the physical system, we can just refer to the two
possible states as 0 and 1, the binary digits.

Since binary digits are used so much in computing, an abbreviation for binary
digit was invented: the bit. So, a bit is just a binary digit, which can be 0 or 1, which
represent the states of any physical system with two states. Since systems with two
states carry the smallest amount of information possible, a bit carries the smallest
amount of information possible:

A bit is the smallest unit of classical information.

1.1.5 Binary

Previously, when we had three coins, we wrote the eight possible states as

HHH, HHT, HTH, HTT, THH, THT, TTH, TTT.

Now, replacing heads and tails with the bits 0 and 1, the eight possible states are
now written as

000,001,010,011,100,101,110,111.

In other words, we can write the state in terms of numbers, and numbers are useful
because we can use math to describe and manipulate them.

2 Voltage is the amount of electrical pressure pushing charges in the circuit, but you do not need to
know this.
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What kind of numbers are these states? They are binary numbers, or base 2
numbers. These are also called binary strings or bit strings. For example, if we
have five bits, one possible state is

11010 or 110102,

where the subscript of 2 can be included to clarify that it is a binary (base-2) number.
We pronounce this as “one one zero one zero,” and optionally say “base 2” after-
ward. It is not pronounced “eleven-thousand ten” because it is not a regular, decimal
(base-10) number. Actually, what decimal number does it correspond to?

To figure this out, let us first remind ourselves how normal decimal numbers
work. Consider the number “six-thousand one-hundred seventy-four” (6174). It has
a six in the thousands place, literally meaning there are six thousands, a one in the
hundreds place, meaning one hundred, a seven in the tens place, meaning seven tens,
and a four in the ones place, meaning four ones. That is,

6174 = 6 ·1000+1 ·100+7 ·10+4 ·1
= 6 ·103 +1 ·102 +7 ·101 +4 ·100.

So, each digit represents how many of each power of 10 we have.
For binary numbers, each digit similarly denotes how many of each power of

2 we have. Back to our question from a couple paragraphs ago, we can find what
decimal number that 110102 corresponds to:

110102 = 1 ·24 +1 ·23 +0 ·22 +1 ·21 +0 ·20

= 1 ·16+1 ·8+0 ·4+1 ·2+0 ·1
= 26.

So, we have one in the sixteens place, one in the eights place, zero in the fours
place, one in the twos place, and zero in the ones place, and the binary number
11010 corresponds to the decimal number 26 twenty-six.

In the example 110102, the leftmost bit contributes 16 to the number, the most
of any bit. For this reason, the leftmost bit is called the most significant bit. Simi-
larly, the rightmost bit can only contribute 1 to the number, and for this reason, the
rightmost bit is called the least significant bit.

We can also count in binary. To understand how, let us think about how we nor-
mally count from zero to one-hundred. For clarity, we write the leading zeros. To
begin, the rightmost digit increments from 0 to 9:

000,001,002,003,004,005,006,007,008,009, . . .

The rightmost digit has reached its maximum value, so for the next number, it rolls
over from 9 to 0, and the middle digit increments by 1, yielding 010. Continuing,

010,011,012,013,014,015,016,017,018,019, . . .



8 1 Classical Information and Computation

Again, the rightmost digit has reached its maximum value, so for the next num-
ber, it rolls over from 9 to 0, and the middle digit increments by 1, yielding 020.
Continuing,

020,021,022,023, . . . ,098,099, . . .

The rightmost digit has again reached its maximum value, so for the next number,
it rolls over from 9 to 0, and the middle digit needs to increment by 1. But it has
also reached its maximum value, so it also rolls over from 9 to 0, and the left digit
is incremented, yielding 100.

We can apply the same procedure to count in binary. Say we have a bit string
of length 3. It starts with 000, and we increment the rightmost digit, yielding 001.
Incrementing again, the rightmost bit has reached its maximum value (since a bit
can only be 0 or 1), so it rolls over from 1 to 0, and the middle bit is incremented,
yielding 010. Incrementing again, we have 011. Incrementing again, the rightmost
bit rolls over from 1 to 0, the middle bit also rolls over from 1 to 0, and the leftmost
bit increments from 0 to 1, yielding 100. Continuing this procedure, we can count
from 000 to 111, which is counting in decimal from 0 to 7:

Binary Decimal
(Base 2) (Base 10)

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

Exercise 1.5. Convert the following binary numbers (base 2) to decimal numbers (base 10):
(a) 101112.
(b) 110010102.

Exercise 1.6. Convert the following decimal numbers (base 10) to binary numbers (base 2):
(a) 42.
(b) 495.

Exercise 1.7. Base-16, commonly called hexadecimal, is another frequently used number system
in computing. The sixteen digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. So the letter A is
ten in decimal, B is eleven in decimal, . . . , and F is fifteen in decimal. For example, converting the
hexadecimal number F2A to decimal,

F2A = 162 ·F+161 ·2+160 ·A
= 256 ·15+16 ·2+1 ·10

= 3840+32+10

= 3882.

(a) Convert the hexadecimal number 3B7C to a decimal (base 10) number.
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(b) Convert the hexadecimal number FF to a binary (base 2) number. (So two hexadecimal num-
bers can represent eight bits.)

(c) HTML uses hexadecimal to encode colors using the RGB color model. RGB stands for the
(additive) primary colors red, green, and blue, and by adding together different amounts of
their light, the other colors can be produced. [From painting, you may be familiar with the
(subtractive) primary colors, red, yellow, and blue.] The amount of red, green, and blue ranges
from 0 to 255, with 0 being none of the color, and 255 being the full amount of the color. This
range of 0 to 255 corresponds to the hexadecimal numbers 00 through FF. An HTML color
code uses six hexadecimal numbers, like FA10E4, with the left two digits (FA) corresponding
to the amount of red, the middle two digits (10) corresponding to the amount of green, and
the right two digits (E4) corresponding to the amount of blue. This particular mix of colors
results in a bright pink. Convert the hexadecimal numbers FA, 10, and E4 to decimal.

Exercise 1.8. Negative numbers can be encoded in binary using two’s complement, where the most
significant bit is negative, while the remaining bits are positive. For example, in two’s complement,

110102 = 1 · (−24)+1 ·23 +0 ·22 +1 ·21 +0 ·20

= 1 · (−16)+1 ·8+0 ·4+1 ·2+0 ·1
=−6.

Convert each of the following two’s complement numbers to decimal:

Binary Decimal
(Two’s Complement) (Base 10)

000 ?
001 ?
010 ?
011 ?
100 ?
101 ?
110 ?
111 ?

1.1.6 ASCII

Computers store information using bits (0’s and 1’s), but in our world, we often
store information and communicate using text (letters, punctuation, etc.). How do
we bridge this divide? How do we encode text using bits?

Historically, computers encoded letters, numbers, symbols, and special com-
mands (like carriage return or newline) using the American Standard Code for Infor-
mation Interchange, commonly abbreviated as ASCII (pronounced ass-key). ASCII
uses 7 bits, so they have 27 = 128 possible states from 0000000 through 1111111. Of
these, ninety-five of the bit strings encode printable characters, and they are shown
in Table 1.1. The remaining thirty-three bit strings encode non-printable characters,
like the “escape” key.

For example, the following binary string encodes the text “Tom.”
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Table 1.1: Printable ASCII characters (glyphs) and their binary and decimal encod-
ings.

Binary Decimal Glyph

0100000 32 space
0100001 33 !
0100010 34 ”
0100011 35 #
0100100 36 $
0100101 37 %
0100110 38 &
0100111 39 ’
0101000 40 (
0101001 41 )
0101010 42 *
0101011 43 +
0101100 44 ,
0101101 45 -
0101110 46 .
0101111 47 /
0110000 48 0
0110001 49 1
0110010 50 2
0110011 51 3
0110100 52 4
0110101 53 5
0110110 54 6
0110111 55 7
0111000 56 8
0111001 57 9
0111010 58 :
0111011 59 ;
0111100 50 <
0111101 61 =
0111110 62 >
0111111 63 ?

Binary Decimal Glyph

1000000 64 @
1000001 65 A
1000010 66 B
1000011 67 C
1000100 68 D
1000101 69 E
1000110 70 F
1000111 71 G
1001000 72 H
1001001 73 I
1001010 74 J
1001011 75 K
1001100 76 L
1001101 77 M
1001110 78 N
1001111 79 O
1010000 80 P
1010001 81 Q
1010010 82 R
1010011 83 S
1010100 84 T
1010101 85 U
1010110 86 V
1010111 87 W
1011000 88 X
1011001 89 Y
1011010 90 Z
1011011 91 [
1011100 92 \
1011101 93 ]
1011110 94 ˆ
1011111 95

Binary Decimal Glyph

1100000 96 `
1100001 97 a
1100010 98 b
1100011 99 c
1100100 100 d
1100101 101 e
1100110 102 f
1100111 103 g
1101000 104 h
1101001 105 i
1101010 106 j
1101011 107 k
1101100 108 l
1101101 109 m
1101110 110 n
1101111 111 o
1110000 112 p
1110001 113 q
1110010 114 r
1110011 115 s
1110100 116 t
1110101 117 u
1110110 118 v
1110111 119 w
1111000 120 x
1111001 121 y
1111010 122 z
1111011 123 {
1111100 124 |
1111101 125 }
1111110 126 ˜

1010100︸ ︷︷ ︸
T

1101111︸ ︷︷ ︸
o

1101101︸ ︷︷ ︸
m

= Tom

So, if I want to send you my name, I can just send you these twenty-one bits. Once
you have the bits, you decode it into the text “Tom.”

In modern times, there are many more characters to encode. There are other
languages with different alphabets or characters, plus emojis and other symbols.
So, more than 7 bits are needed to encode all of them. The most common modern
standard is UTF-8, or the Unicode Transformation Format, and it uses up to 32 bits
(for 232 = 4294967296 states). The first 128 bit strings in UTF-8 are the ASCII
characters.
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Exercise 1.9. Write your first name as an ASCII bit string.

Exercise 1.10. Decode the following ASCII characters:

1010001 1110101 1100001 1101110 1110100 1110101 1101101

1.2 Logic Gates

In the previous section, we introduced bits, the fundamental unit of classical in-
formation. We can encode whatever information we would like using bits, such as
words, characters, and even pictures. In this section, we explore how to manipulate
bits so that we can compute using them.

We manipulate bits using logic gates, which take one or more bits as inputs and,
depending on the input, outputs one or more bits. Let us explore the simplest exam-
ples of logic gates next, which manipulate a single bit. Then, we will learn about
logic gates that act on two bits. Following this, we will discuss what logic gates are
physically and explain how they can perform all computations.

1.2.1 Single-Bit Gates

The simplest logic gates take one bit as input and then outputs one bit, which we
can draw as a circuit diagram:

GateInput Output

This circuit is read left to right. The input bit on the left travels along the line or wire
into the gate, which we have drawn as a generic box. A bit comes out of the gate on
the right, traveling along the line, and it is the output.

Since the input is a single bit, it can only be a zero or a one. We can list these two
possibilities in a table called a truth table:

Input Output
0 ?
1 ?

Depending on which gate we have, the outputs will be different, so we have used
question marks as placeholders for now. How many possible outputs are there? Well,
there are two outputs, and each output can be 0 or 1, so there are 2×2 = 4 possible
outputs. Hence, there are four possible single-bit gates, which we describe now.

• The identity gate does nothing to the bit: 0 remains 0, and 1 remains 1. The
identity gate is sometimes depicted by a triangle:
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A A

A A
0 0
1 1

In our circuit diagram, we have labeled the input bit as A. Since it goes through
the identity gate (the triangle) unchanged, the output on the other side is also A.
Or as a wire, A comes in, nothing happens, and A comes out. Above, we also
filled in the truth table so that the input and output are both simply A. The first
row of the truth table indicates that if the input is 0, the output is 0. The second
row indicates that if the input is 1, the output is 1.
Since the identity gate does nothing, we often omit the triangle and just draw a
longer wire:

A A

Again, this is read left-to-right, so the input bit A moves through the wire and
comes out the other side as the output, unchanged.
The identity gate is sometimes called the buffer gate.

• The NOT gate flips a bit from 0 to 1, or 1 to 0. Its circuit diagram is a triangle
with a small circle:

A A

A A
0 1
1 0

The input bit A goes through the NOT gate from the left, and the resulting output
is A, where the overline denotes negation (i.e., the flipped or opposite bit). The
behavior of this circuit is completely described by the above truth table, and it
shows that when 0 is the input, 1 is the output, and vice versa.
In many texts, A is also denoted ¬A, where ¬ means negation. The NOT gate is
sometimes called the inverter gate.

• The always 0 gate always outputs 0, regardless of the input. It does not have a
standard circuit diagram since it is not commonly used, but its truth table is

A 0
0 0
1 0

The first line of the truth table indicates that when the input is 0, the output is 0.
The second line indicates that when the input is 1, the output is 0.

• The always 1 gate always outputs 1, regardless of the input. It does not have a
standard circuit diagram since it is not commonly used, but its truth table is

A 1
0 1
1 1

The first line of the truth table indicates that when the input is 0, the output is 1.
The second line indicates that when the input is 1, the output is 1.

These are all four possible logic gates with a single input and a single output.
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1.2.2 Two-Bit Gates

A two-bit logic gate takes two bits as input, say A and B. Although a two-bit logic
gate can have multiple outputs, the simplest case just has one output. So, its circuit
diagram and truth table would look like

Gate
A

B
Output

A B Output
0 0 ?
0 1 ?
1 0 ?
1 1 ?

This truth table has four rows because there are four possible inputs: A and B can
both be 0, A can be 0 and B can be 1, A can be 1 and B can be 0, or both can be
1. Note we listed these in numerical order, since 00, 01, 10, and 11 are the decimal
numbers 0, 1, 2, and 3. Writing them in numerical order is the convention.

Depending on the gate, the outputs will be different, so they have question marks
in the above truth table for now. Since each of the four outputs can be 0 or 1, there
are 24 = 16 possible two-bit gates. Next, we discuss five of the most important ones.

• The AND gate outputs 1 only when both input bits are 1. Its circuit diagram and
truth table are

A

B
AB

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

In this circuit diagram, two bits A and B go through the AND gate, resulting in
AB. Note that standard multiplication works here: 0 ·0 = 0, 0 ·1 = 0, 1 ·0 = 0,
and 1 · 1 = 1. In many texts, AB is also denoted A∧B. This is called the AND
gate because it outputs 1 when A and B are 1. Or, in the language of logic, if we
take 0 to be false and 1 to be true, then AB is true when A and B are both true.

• The OR gate, which outputs 1 if either input (or both) is 1. Its circuit diagram
and truth table are

A

B
A+B

A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

Following many texts, we denote the OR of A and B as A+B, although this is
not actually addition since 1+1 = 1. In some texts, it is also denoted A∨B.

• The Exclusive OR (XOR) gate, which outputs 1 when only one input is one, but
not both. Its circuit diagram and truth table are
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A

B
A⊕B

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

We write the XOR of A and B as A⊕B, i.e., a plus sign with a circle around it.
Mathematically, ⊕ is addition modulo 2, meaning we take the remainder after
dividing by 2. You are probably familiar with modulo in other contexts, like a
circle has 360◦, so 370◦ is equivalent to 10◦. Mathematically, we would write
this as 370◦ = 10◦ mod 360◦, meaning when you divide 370◦ by 360◦, you get
a remainder of 10◦. With ⊕ we take the remainder after dividing by 2, so we
have

0 = 0 mod 2,
1 = 1 mod 2,
2 = 0 mod 2,
3 = 1 mod 2,
4 = 0 mod 2,
5 = 1 mod 2,

...

Hence, the last line of the truth table for A⊕B is 1⊕1 = 2 mod 2 = 0 mod 2.
• The NAND gate, which stands for NOT of AND, and which outputs the NOT

of the AND of the bits. Its circuit diagram and truth table are

A

B
AB

A B AB
0 0 1
0 1 1
1 0 1
1 1 0

Note the circuit diagram is a regular AND gate, with a small circle to indicate a
NOT. We denote NAND by negating an AND, so it is written as AB.

• The NOR gate, which stands for NOT of OR, and which outputs the NOT of the
OR of the bits. Its circuit diagram and truth table are

A

B
A+B

A B A+B
0 0 1
0 1 0
1 0 0
1 1 0

Note the circuit diagram is a regular OR gate, with a small circle to indicate a
NOT. We denote NOR by negating an OR, so it is A+B.
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Exercise 1.11. Consider the following gate that inverts the inputs before passing them into an OR
gate, sometimes called a negative-OR gate:

A

B
A+B

(a) Write the truth table for this circuit.
(b) What logic gate is this equivalent to?

Exercise 1.12. Consider the following gate that inverts the inputs before passing them into an AND
gate, sometimes called a negative-AND gate:

A

B
AB

(a) Write the truth table for this circuit.
(b) What logic gate is this equivalent to?

1.2.3 Logic Gates as Physical Circuits

So far, we have discussed what logic gates do, but we have not discussed what logic
gates are. Let us address that here. While there are many different ways to make
logic gates, but the most common way is using electric circuits. I do not assume that
you know circuits, so we will start slowly.

To begin, here is a drawing of a circuit that consists of a battery, two switches, a
light bulb, and some wires to connect them:

In the above drawing, the two switches correspond to inputs A and B. They are both
in the “on” position, so both inputs are 1. In this case, electricity is able to flow
through the circuit, coming out from the left side of the battery (the side of the
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battery with the bump, or the positive side), down through the switches, right across
the bottom wire, up through the light bulb, and back into the right side of the battery
(the flat side of the battery, or the negative side). Electricity flows from the positive
side of the battery to the negative side, and this counter-clockwise flow is indicated
by arrows on the wires. Since electricity is flowing through the light bulb, it turns
on. The light bulb is the output, and so the output is 1 when both inputs A and B are
1.

Next, let us turn off only the first switch while keeping the second switch on, so
A = 0 and B = 1:

In the above drawing, the electricity is unable to flow in the circuit because the first
switch is turned off. This disconnects the connections, so the electricity does not
have a path to flow. It does not matter that switch B is still on. So, the light bulb is
off, and the output is 0.

Let us try the opposite. We turn on switch A and turn off switch B, so A = 1 and
B = 0:
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In the above drawing, electricity again is unable to flow. It does not matter that
electricity can get through switch A, it cannot get through switch B. So, the light
bulb is off, and the output is 0.

Finally, let us turn off both switches, so A = 0 and B = 0:

Reordering these results so that the inputs are in numerical order, the truth table
for this circuit is

A B Output
0 0 0
0 1 0
1 0 0
1 1 1

This is the truth table for the AND gate, so the circuit we have been examining is
an AND gate. The light bulb only lights up with switch A and switch B are both on.
This is an example of how to create a logic gate using an electrical circuit.

Let us look at another circuit, this time consisting of one switch (input) and one
light bulb (output):

In the above picture, current flows out from the top of the battery (the positive side,
which has a bump). It cannot pass through the switch because the switch is off, so
it travels through the light bulb and returns into the bottom of the battery. So, when
A = 0, the output is 1.
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Now, let us flip on the switch:

Current again flows out from the top of the battery. Since the switch is on, the
current can flow through either the switch or the light bulb. It turns out that given
this option, electricity will simply flow through the switch only and not the light
bulb. This is because it takes practically no effort to flow through the switch, but
it takes considerable effort to flow through the light bulb. Since no electricity is
flowing through the light bulb, it remains off. Thus, when A = 1, the output is 0.

Summarizing these results in a truth table,

A Output
0 1
1 0

This is the truth table for a NOT gate, so the circuit in this example is a NOT gate.
Similarly, we can create simple electrical circuits that implement each of the

other logic gates.

Exercise 1.13. Consider the following electrical circuit:

Answer the following questions.
(a) Say A = 0 and B = 0. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(b) Say A = 0 and B = 1. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(c) Say A = 1 and B = 0. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
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(d) Say A = 1 and B = 1. Sketch the circuit and draw arrows indicating the path through which
the electricity is flowing. Is the light bulb off or on?

(e) What logic gate does the circuit correspond to?

Exercise 1.14. Consider the following electrical circuit:

Answer the following questions.
(a) Say A = 0 and B = 0. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(b) Say A = 0 and B = 1. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(c) Say A = 1 and B = 0. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(d) Say A = 1 and B = 1. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(e) What logic gate does the circuit correspond to?

Exercise 1.15. Consider the following electrical circuit:

Answer the following questions.
(a) Say A = 0 and B = 0. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(b) Say A = 0 and B = 1. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(c) Say A = 1 and B = 0. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(d) Say A = 1 and B = 1. Sketch the circuit and draw arrows indicating the path through which

the electricity is flowing. Is the light bulb off or on?
(e) What logic gate does the circuit correspond to?

Exercise 1.16. In some homes in the United States, special switches are used so that two switches
control a single light. Often, these switches are located at opposite ends of a stairway or a hallway,
and either switch can be used to turn the light on or off. A traditional switch enables or disables
the flow of electricity through a single wire. In contrast, these special switches, called three pole
switches, choose between two different wires. The following electrical circuit gives an example:
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Each switch has three poles, labeled C, 0, and 1. Switch A is current flipped up, which connects C
and 0. Switch B is currently flipped down, which connects C and 1. In this configuration, there is
a complete path for the electricity to flow. It comes out of the positive end of the battery, through
Switch A along A = 0, then down to B = 1, then through Switch B, then down through the light
bulb, left through the bottom wire, and up to the negative end of the battery. So, the light bulb is on
when A = 0 and B = 1.

(a) Say A = 0 and B = 0. Sketch the circuit and draw arrows indicating the path through which
the electricity is flowing. Is the light bulb off or on?

(b) Say A = 1 and B = 0. Sketch the circuit and draw arrows indicating the path through which
the electricity is flowing. Is the light bulb off or on?

(c) Say A = 1 and B = 1. Sketch the circuit and draw arrows indicating the path through which
the electricity is flowing. Is the light bulb off or on?

(d) What logic gate does the circuit correspond to?

We have seen that electrical circuits can be used to create logic gates by con-
necting switches in various ways. The switches themselves have changed over time,
however. Early electrical computers used relays or vacuum tubes as the switches.
A relay is a switch that uses an electrically controlled magnet (i.e., an “electro-
magnet”) to turn on and off the switch. In a vacuum tube (also called a vacuum
valve), one can turn on and off the flow of electricity between two pieces of metal,
one called an anode, and other called a cathode, that is heated. For example, in
the 1940’s, during World War II, the British built a now-famous computer called
Colossus to help break German codes. The first generation Colossus computer had
roughly 1,600 vacuum tubes, and the second generation had about 2,400. Vacuum
tubes often failed, however, and needed replacement.

Nowadays, computers use transistors as the switches. They are typically made of
silicon, a common semiconductor, with some other elements to control how easily
electricity flows through certain areas. Transistors have several benefits. They have
no moving parts (i.e., they are “solid-state” devices), so they are more reliable. They
are smaller, which allows computers to be smaller, and they are also faster. Cur-
rently, a single computer processor can have tens of billions of transistors, which is
a huge improvement over Colossus’s 2,400 vacuum tubes.

Exercise 1.17. Visit the website https://en.wikipedia.org/wiki/Transistor_cou
nt.

https://en.wikipedia.org/wiki/Transistor_count
https://en.wikipedia.org/wiki/Transistor_count
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(a) Pick an older computer processor. Which one did you pick, what year was it introduced, and
how many transistors did it have?

(b) Pick a newer computer processor. Which one did you pick, what year was it introduced, and
how many transistors did it have?

1.2.4 Multiple Gates

We can combine logic gates to create more interesting operations. For example, say
we nest two AND gates together:

A

B
AB

C
ABC

A B C AB ABC
0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 0 0
1 0 0 0 0
1 0 1 0 0
1 1 0 1 0
1 1 1 1 1

To find the above truth table, we can first calculate AB, which is the output of the
first AND gate. Then, to get the final output, we can take the AND of AB with C,
and we see that this is precisely ABC, the AND of all three bits, because the output
is 1 only when all three inputs are 1. Then, for simplicity, we often draw this as a
single AND gate, but with three inputs:

A
B
C

ABC

With more inputs, additional AND gates can be nested, or more input lines can be
drawn on a single AND gate.

As a more complicated example, consider the following circuit, which contains
an XOR gate, NOT gate, and AND gate:

A

B

A⊕B A⊕B

C
A⊕BC

The truth table for this, including its intermediate steps, is shown below:
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A B C A⊕B A⊕B A⊕BC
0 0 0 0 1 0
0 0 1 0 1 1
0 1 0 1 0 0
0 1 1 1 0 0
1 0 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 1 1 0 1 1

This resulting behavior does not have a standard, nice name, unlike the first example
of the three-bit AND gate. To write it as a single gate, we can just give it whatever
name we would like and draw it as a generic box:

Name

A

B

C

A⊕BC

Exercise 1.18. Consider the XOR of three bits A, B, and C, which can either be two two-bit XOR
gates strung together, or a single three-bit XOR gate:

A

B
A⊕B

C
A⊕B ⊕ C

A
B
C

A⊕B ⊕ C

(a) What is the truth table for this circuit?
(b) When there is an even number of 1’s in the input (we call this even parity), what is the output?
(c) When there is an odd number of 1’s in the input (we call this odd parity), what is the output?

Exercise 1.19. What is the truth table for the following circuit diagram?

A

B

C

Output

Note the solid dot simply means that the wires are connected there. Then, C is both inputs of the
NAND gate, so the gate takes the NAND of C with itself.

Exercise 1.20. Answer the following questions:
(a) How many possible one-bit logic gates are there?
(b) How many possible two-bit logic gates are there?
(c) How many possible three-bit logic gates are there?
(d) How many possible four-bit logic gates are there?
(e) How many possible n-bit logic gates are there?
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1.2.5 Universal Gates

Previously, we described five of the sixteen possible two-bit gates (AND, OR, XOR,
NAND, and NOR). But what about the other eleven? To make matters worse, for
a three-bit gate, the truth table has eight entries, and each output can be 0 or 1,
meaning there are 28 = 256 possible three-bit gates. Do we need to list all of them,
too?

Thankfully, the answer is no. We do not need separate gates for all of these pos-
sibilities because we can reproduce all of them using just a few type of gates. We
call a set of gates that can perform all possible logic operations a universal gate set,
and here are some examples:

• {NOT,AND,OR} is a universal gate set. Given any truth table, we can im-
plement it using only NOT, AND, and OR gates. For example, consider the
following truth table for a circuit with three inputs, A, B, and C:

A B C Output
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

We can create a circuit composed of NOTs, ANDs, and ORs with this truth
table by looking at every case where the output is 1, then combining them all
together using ORs. Beginning with the first line of the truth table, the output is
1 when A = 0, B = 0, and C = 0. This is ABC. Next, the output is 1 when A = 0,
B = 0, and C = 1. This is ABC. Jumping to the fifth line of the truth table, the
output is 1 when A = 1, B = 0, and C = 0, which is ABC. Finally, from the
seventh line of the truth table, the output is 1 when A = 1, B = 1, and C = 0,
which is ABC. The output is 1 whenever any of these are true, so the circuit is
ABC+ABC+ABC+ABC. As a circuit diagram, it is:
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A

B

C

This is a rather complicated circuit, and later in this chapter, we will learn an
algebraic way to simplify such circuits (it simplifies to A+B+AC). But for
now, the important point is that we can always use NOT, AND, and OR gates in
this manner to implement any truth table.

Exercise 1.21. Draw a circuit diagram using only NOT, AND, and OR gates that implements the
XOR gate.

Exercise 1.22. Draw a circuit diagram using only NOT, AND, and OR gates that corresponds to
the following truth table with input bits A, B, and C:

A B C Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

• {NOT,AND} is a universal gate set. To prove this, note the following circuit of
NOTs and ANDs calculates the OR of bits A and B:

A

B

AB

A B A B AB AB
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1
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First, the inputs A and B go through NOT gates, resulting in A and B. Then,
those become the inputs into an AND gate, resulting in AB. Finally, this is in-
verted, yielding AB. This is the exact same truth table as A+B, so this circuit,
which only contains NOTs and an AND, implements the OR gate. Then, since
{NOT,AND,OR} is a universal gate set, just {NOT,AND} is also a universal
gate set.

Exercise 1.23. Draw a circuit diagram using only NOT and AND gates that corresponds to the
following truth table with input bits A, B, and C:

A B C Output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

• {NAND} is a universal gate set, so we say that NAND is a universal gate. So,
with only NAND gates, one can construct all logic gates. To prove this, let us
show that NAND gates can produce the NOT and AND gates, since we already
know that {NOT,AND} is universal.
First, we can get a NOT gate from NAND by connecting a bit to both inputs:

A AA

A AA AA
0 0 1
1 1 0

Next, to get AND, note that NAND followed by NOT is simply AND. That is,
if we apply NOT twice, they cancel out, leaving AND:

A

B

AB
AB

A B AB AB
0 0 1 0
0 1 1 0
1 0 1 0
1 1 0 1

Since {NOT,AND} is a universal set of gates, and NAND can reproduce both
of them, NAND is a universal gate.

Exercise 1.24. Draw a circuit diagram using only NAND gates that implements the OR gate.

Exercise 1.25. Draw a circuit diagram using only NAND gates that implements the following truth
table:

A B Output
0 0 1
0 1 0
1 0 0
1 1 1
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Exercise 1.26. Draw a circuit diagram using only NAND gates that corresponds to the following
truth table with input bits A, B, and C:

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

Hint: You could create a circuit using {NOT,AND,OR}, then replace the ORs with NOTs and
ANDs so that only {NOT,AND} are used, and then replace the NOTs and ANDs with NANDs.
This would be a lot of NAND gates, however! To save you from this tedium, I will tell you that
this truth table can be created with just two NAND gates.

• {NOT,OR} is a universal gate set. See Exercise 1.27.

Exercise 1.27. In this problem, we will prove that {NOT,OR} is universal. To do this, we already
know that {NOT,AND,OR} is universal, so we simply need to show that AND gates can be
constructed using {NOT,OR}.

Write the truth table for the following circuit, and verify that it corresponds to the AND gate.

A

B

Output

• {NOR} is a universal gate set, so NOR is a universal gate. See Exercise 1.28.

Exercise 1.28. In this problem, we will prove that NOR is a universal gate. To do this, we know
from Exercise 1.27 that {NOT,OR} is universal, so we simply need to show that NOT and OR can
be constructed using NOR gates.

(a) Write the truth table for the following circuit, and verify that it corresponds to the NOT gate.

A Output

(b) Write the truth table for the following circuit, and verify that it corresponds to the OR gate.

A

B
Output
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1.3 Adders and Verilog

As an application of the logic gates we have introduced, let us create a logic circuit
that adds two binary numbers. First, we will give an overview of how to manually
add binary numbers. Then, we will construct different circuits for adding the various
parts of a binary number, and we will code these circuits using Verilog, a hardware
description language. Finally, we will assemble these circuits into a full circuit that
adds binary numbers. In doing so, we will see that logic circuits can be used to
compute things, like adding numbers, and indeed everything that a computer does
is based on logic circuits.

1.3.1 Adding Binary Numbers by Hand

Say we want to add two binary numbers, like 1011 “+” 1110, where “+” denotes
normal addition, not OR. So we want to find

1011
“+” 1110

Let us work through each column of bits, from right to left.

Starting with the rightmost bits, 1 plus 0 is 1. Nothing car-
ries to the next column, so we write a small zero above the
next column.

(carry) 0

1011
“+” 1110

(sum) 1

Now for the second bits (from the right), we have the carry
of zero plus one plus one. In decimal, 0+1+1 = 2, but in
binary, it is 10. So, the sum at the bottom is 0, and 1 carries
to the next column.

(carry) 1 0

1011
“+” 1110

(sum) 01

For the third bits (from the right), we have 1+0+1, which
again is 2 in decimal or 10 in binary, so the sum at the
bottom is 0, and 1 carries out to the next column.

(carry) 1 1 0

1011
“+” 1110

(sum) 001
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Finally, for the leftmost bits, we have 1+1+1, which is 3
in decimal or 11 in binary. So, the sum at the bottom is 1,
and 1 carries to the next column. This final carry becomes
a fifth digit of the sum.

(carry) 1 1 1 0

1011
“+” 1110

(sum) 11001
Thus, 1011 “+” 1110 = 11001. Converting this from binary to decimal, 11+ 14 =
25, as it should be.

In general, to add two 4-bit numbers A3A2A1A0 and B3B2B1B0, we need to carry
four numbers C4,C3,C2,C1, and we get a five-bit sum S4S3S2S1S0:

(carry) C4 C3 C2 C1

A3A2A1A0

“+” B3B2B1B0

(sum) S4S3 S2 S1 S0

Since the leftmost carry is the leftmost digit of the sum, S4 =C4.
In the next several sections, we will create a circuit to perform this addition pro-

cess. To add the rightmost column, we need a circuit that adds two bits and outputs
a carry and a bit of the sum. This is called a half adder. For the remaining columns,
we need a circuit that adds three bits (a carry into the sum and the two bits we want
to add) and outputs a carry and a bit of a sum. This is called a full adder. By string-
ing together a half adder and several full adders into a circuit called a ripple-carry
adder, we can add binary numbers.

1.3.2 Half Adder

Let us begin by creating a circuit that adds two bits. In general, there are four possi-
bilities for these two bits:

(carry) 0
0

“+” 0

(sum) 0

(carry) 0
0

“+” 1

(sum) 1

(carry) 0
1

“+” 0

(sum) 1

(carry) 1
1

“+” 1

(sum) 0

Let us call the input bits A and B, the sum S, and the carry bit C. Then the truth table
is

A B S C
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1
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From this, we see that the sum is the XOR of A and B, and the carry is the AND of
A and B. Thus,

S = A⊕B, C = AB.

As a circuit diagram, it is

A

B
S

C

This is called a half adder.
Rather than manually wiring this circuit, we can code it using a hardware de-

scription language (HDL), which describes the structure and behavior of computer
hardware, in this case, digital logic circuits. HDLs can be used to program a field-
programmable gate array (FPGA), which is an integrated circuit whose logic gates
can be configured in software.

The two most common HDLs for logic design are Verilog and VHDL, and here
we will focus on Verilog. Although the following Verilog code can be used for actual
hardware, we will use an online Verilog simulator at https://tutorialspoint.c
om/compile_verilog_online.php. Here is the website when it is first loaded:

If you click the Execute button in the top-left corner of the webpage, the following
appears in the Result section of the webpage:

https://tutorialspoint.com/compile_verilog_online.php
https://tutorialspoint.com/compile_verilog_online.php
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In the first and second lines, $ indicates that a command is being given. In the first
line, the command is iverilog, which is the compiler. The option -o main speci-
fies that the output (-o) should be a file called main, so after this command is run, we
should get an executable file called main. Continuing, the first line, *.v denotes all
files with the extension .v, so we are compiling all files with that extension. Notice
from the left pane that our code is in a file called main.v, so this will be compiled.
Now, in the second line, vvp is the simulator, and the executable we are simulating
is called main. Our program outputs Hello, World to the third line.

Now, in the left panel, we can replace the code with the Verilog code for the half
adder:

module main;
reg A,B;
wire S,C;

xor xor1(S,A,B);
and and1(C,A,B);

initial
begin

A=0;
B=1;
#5; // Wait 5 time units.
$display("Sum = ",S);
$display("Carry = ",C);

end
endmodule

In the main module, we define two registers A and B. Each register allows the as-
signment and storage of a bit, which we will later do in the initialization block. We
also define two wires S and C. A wire takes some value depending on the circuit,
and we cannot simply define it to take some value. Next, we create the circuit by
creating an instance of the XOR gate which we call xor1, and an instance of the
AND gate which we call and1. For both of these, the first argument is the output,
and the remaining arguments are the inputs. For example, xor xor1(S,A,B) com-
putes the XOR of A and B, and the result is S. Now for the initial block, we assign
the registers A and B the values 0 and 1, respectively. After this assignment has been
made, we wait 5 of the simulation’s time units so that the circuit has had a chance
to respond to our inputs. Then, we print the values of the carry and sum. Executing
this, we get
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As expected, when we add 0 and 1, we get 1 with a carry of 0.
To make the half adder more easily reusable, we can replace it by a single circuit

symbol, which we label HA for half adder:

HA
A

B

S

C

In Verilog, we do this by creating a module (or function) for the half adder:

module halfadd(S,C,A,B);
input A,B;
output S,C;

xor xor1(S,A,B);
and and1(C,A,B);

endmodule

module main;
reg A,B;
wire S,C;

halfadd half1(S,C,A,B);

initial
begin

A=0;
B=1;
#5; // Wait 5 time units.
$display("Sum = ",S);
$display("Carry = ",C);

end
endmodule

Here, the name of the module is halfadd, and it takes four parameters (S,C,A,B),
which we specify as inputs and outputs. The half adder contains an instance of the
AND gate and an instance of the XOR gate. In the main module, we instantiate the
half adder, and the instance is named half1. Executing this, we get

This is the exact same result as before, which is expected because we did not change
anything except move the half adder into a module.

Exercise 1.29. Code the following circuit in Verilog.
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A
C

B

Using your Verilog code, try all possible inputs for A and B and fill in the outputs in the following
truth table:

A B C
0 0 ?
0 1 ?
1 0 ?
1 1 ?

Do your results make sense?

1.3.3 Full Adder

After adding the first two bits, the remaining bits need to be added along with what-
ever was carried in. Since this includes a carry bit, it is called a full adder. Let us call
the bits we are adding A and B, and let us call the bit we carry in Cin. The outputs
are the sum S and carry out Cout. Here is a truth table for what the addition should
do:

A B Cin S Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

From the truth table, we see that the sum S is 1 whenever one of the inputs A, B, or
Cin are 1, or when all three of them are 1. This is equivalent to the XOR of all three
bits:

S = A⊕B⊕Cin.

From this truth table, we also see that the carry out is 1 when A and B are both 1, or
when Cin = 1 and A⊕B = 1:

Cout = AB+Cin(A⊕B).

Putting these together, the logic circuit is
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A

B

Cin
S

Cout

Note that there are two groups containing an AND and an XOR:

A

B

Cin
S

Cout

Each of these is a half adder! So the full adder is equivalent to

HA

HA
Cin

A

B
Cout

S

To make the full adder more easily reusable, we can replace it by a single circuit
symbol, which we label FA for full adder:

FA

Cin

A

B

S

Cout

In Verilog, we can code a module for the full adder:

module halfadd(S,C,A,B);
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input A,B;
output S,C;

xor xor1(S,A,B);
and and1(C,A,B);

endmodule

module fulladd(S,Cout,Cin,A,B);
input Cin,A,B;
output S,Cout;
wire w1,w2,w3;

halfadd half1(w1,w2,A,B);
halfadd half2(S,w3,Cin,w1);
or or1(Cout,w3,w2);

endmodule

module main;
reg Cin,A,B;
wire S,Cout;

fulladd full1(S,Cout,Cin,A,B);

initial
begin

Cin=1;
A=0;
B=1;
#5; // Wait 5 time units.
$display("Sum = ",S);
$display("Carry = ",Cout);

end
endmodule

Executing this, we get

As expected, 1+0+1 results in 0 with a carry out of 1.

Exercise 1.30. The full adder from class contains two XOR gates, two AND gates, and one OR
gate. Replace the OR gate with an XOR gate. What is the truth table of this new circuit? How does
it compare to the truth table of the full adder from class?

1.3.4 Ripple-Carry Adder

Using these adders, we can assemble them to add binary numbers. Let us denote
the bits of the binary numbers A3A2A1A0 and B3B2B1B0. We can use a half adder to
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add bits A0 and B0, then carry the bit into a full adder to add bits A1 and B1, then
continue adding the successive bits using full adders:

HA

FA

FA

FA

A0

B0

A1

B1

A2

B2

A3

B3

S0

S1

S2

S3

C4 = S4

This is called a ripple-carry adder, since the carry from one addition ripples to the
next addition. Let us code it in Verilog:

module halfadd(S,C,A,B);
input A,B;
output S,C;

xor xor1(S,A,B);
and and1(C,A,B);

endmodule

module fulladd(S,Cout,Cin,A,B);
input Cin,A,B;
output S,Cout;
wire w1,w2,w3;

halfadd half1(w1,w2,A,B);
halfadd half2(S,w3,Cin,w1);
or or1(Cout,w3,w2);

endmodule

module rippleadd(S,A,B);
input [3:0] A,B;
output [4:0] S;
output Cout;
wire [3:1] C;

halfadd half1(S[0],C[1],A[0],B[0]);
fulladd full1(S[1],C[2],C[1],A[1],B[1]);
fulladd full2(S[2],C[3],C[2],A[2],B[2]);
fulladd full3(S[3],S[4],C[3],A[3],B[3]);

endmodule

module main;
reg [3:0] A,B;
wire [4:0] S;
wire Cout;
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rippleadd ripple1(S,A,B);

initial
begin

A=4'b1011;
B=4'b0011;
#5; // Wait 5 time units.
$display(A,"+",B,"=",S);
$display("%b",A,"+%b",B,"=%b",S);

end
endmodule

To explain this code, in the rippleadd module, the line input [3:0] A,B; defines
A and B to each have four inputs indexed from 3 to 0. That is, A = A3A2A1A0, and
the way we write each of these bits in Verilog is A[3], A[2], A[1], and A[0]. The same
holds for B. In the next line, we similarly define S = S4S3S2S1S0. A couple lines
later, we define C[3], C[2], and C[1] as the three carry bits, and we did not define
C[4] because this final carry out is exactly S[4]. In the initial block, A and B now
binary numbers of length 4. We assign their values in binary using 4’b followed by
the binary number. By default, displaying A and B prints them as decimal numbers,
so we use the %b format code to print them in binary instead.

Exercise 1.31. Using the 4-bit adder that we coded in Verilog, what is 1001 plus 0111?

Exercise 1.32. Code an 8-bit adder in Verilog. Use it to add 10101101 and 00111001.

1.3.5 Ripple-Carry with Full Adders

For simplicity, one may prefer to only have full adders in the circuit. To do this, we
can replace the first half adder with a full adder with a carry-in of 0.
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FA

FA

FA

FA

C0 = 0

A0

B0

A1

B1

A2

B2

A3

B3

S0

S1

S2

S3

C4 = S4

In other words, we are adding

(carry) C4 C3 C2 C1 C0

A3A2A1A0

“+” B3B2B1B0

(sum) S4S3 S2 S1 S0

but fixing C0 = 0.

Exercise 1.33. Using Verilog, code the 4-bit ripple-carry adder that only uses full adders, no half
adder. Use it to add 0110 and 1110.

1.3.6 Circuit Complexity

If the ripple-carry adder consists entirely of full adders, then adding two n-bit num-
bers requires n full adders. Each full adder uses five logic gates, for a total of 5n
logic gates.

Of course, since the first full adder has a carry-in of zero, it can be replaced with
a half adder. This reduces the number of gates by three, so the number of logic gates
is 5n−3.

1.4 Circuit Simplification and Boolean Algebra

Previously, we learned that {NOT,AND,OR} is a universal gate set. We demon-
strated this by creating a circuit that implemented a given truth table. The circuit was
ABC+ABC+ABC+ABC, and we claimed that it could be simplified to A+B+AC.
Now, we are going to prove this. One way is to show that their truth tables are the
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same. But, it would be nice to have an algebraic way to show that their outputs are
equal, i.e.,

ABC+ABC+ABC+ABC = A+B+AC.

In this section, we will learn how to do this using the rules of algebra for bits, called
boolean algebra. These rules will allow us to simplify complicated circuits in a
systematic, algebraic manner.

1.4.1 Order of Operations

First, we need to learn how to read boolean expressions. Consider the following
expression on three inputs A, B, and C, which contains one OR and one AND:

A+BC.

When implementing this, do we do the OR first, i.e., (A+B)C, or the AND first,
i.e., A+(BC)? Does it even matter? To see, let us work out the truth table for each
option:

A B C (A+B)C A+(BC)

0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 1 1 1 1
1 0 0 0 1
1 0 1 1 1
1 1 0 0 1
1 1 1 1 1

So the order in which we do the operations matters. Just like in regular math, where
we multiply (and divide) before adding (and subtracting), the convention in boolean
algebra is that AND is done first, then OR. Thus,

A+BC = A+(BC).

1.4.2 Association, Commutativity, and Distribution

AND and OR also follow several familiar properties from elementary algebra. First,
they are associative:

• ABC = (AB)C = A(BC)
• A+B+C = (A+B)+C = A+(B+C)

AND and OR are also commutative:
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• AB = BA
• A+B = B+A

Finally, both are distributive, meaning AND distributes into OR, and OR distributes
into AND:

• A(B+C) = AB+AC
• A+(BC) = (A+B)(A+C)

The last point is likely the most foreign. It is not true when adding and multiplying
numbers (e.g., 2+3 ·4 ̸= (2+3)(2+4), since the left-hand side evaluates to 14, and
the right-hand side evaluates to 30), but it is true of AND/OR with bits!

1.4.3 Identities Involving Zero and One

Our first identities involve 0 and 1. They can be proved by writing out their truth
tables, or by the arguments given below.

• A0 = 0, since A and 0 are never both 1.
• A1 = A, since A and 1 are both 1 when A is 1.
• A+0 = A, since 0 is never 1, so A or 0 is whatever A is.
• A+1 = 1, since A or 1 is always 1.

The first three are consistent with elementary algebra: multiplying by 0 yields 0,
multiplying by 1 does nothing, and adding 0 does nothing. The last point, however,
is different. In boolean algebra, “adding” 1 yields 1 because it is the OR operator,
not addition.

1.4.4 Single-Variable Identities

There are several identities involving logic gates on only a single bit A and its inverse
A. They can be proved by writing out their truth tables, or by the arguments given
below.

• A = A, since inverting twice results in the original bit.
• AA = A, since A and itself is just A.
• AA = 0, since A and A are inverses, they are never both 1.
• A+A = A, since A or itself is just A.
• A+A = 1, since A and A are inverses, one of them is always 1.

These identities now differ substantially from adding and multiplying numbers, e.g.,
3 ·3 = 32.



40 1 Classical Information and Computation

1.4.5 Two-Variable Identities and De Morgan’s Laws

There are some important identities involving two bits A and B. They can be proved
by writing out their truth tables, or since they are less obvious, we also provide
algebraic proofs for each.

• A+AB = A. Regardless of B, when A = 0, A+AB = 0, and when A = 1, A+
AB = 1, so the result is entirely dependent on A. As an algebraic proof,

A+AB = A1+AB = A(1+B) = A1 = A.

• A+AB = A+B. When A = 1, A+AB is clearly 1. When A = 0, then A = 1, so
AB = B. As an algebraic proof,

A+AB = A+(AB) = (A+A)(A+B) = (1)(A+B) = A+B.

The next two points are called De Morgan’s Laws, which states that the NOT of
an AND is the OR of the NOTs, and the NOT of an OR is the AND of the NOTs.

• AB = A+B. For AB to be 1, AB must be 0. Thus, A and B are not both 1. At
least one of them must be 0, which is A+B. In Exercise 1.11, this statement
that NAND and negative-OR are equivalent was proved using truth tables. The
following algebraic proof is more complicated, so consider it optional.

Proof. We begin by showing that if X and Y satisfy X +Y = 1 and XY = 0, then
they are inverses, i.e., Y = X :

X = X1 = X(X +Y ) = XX +XY = 0+XY

= XY +XY = (X +X)Y = 1Y = Y.

In the second equality, we used X +Y = 1, and in the fifth equality, we used
XY = 0. With these two assumptions, we found that X = Y , so the inverse of
X is Y . It must also be true that the inverse of Y is X , which we can prove by
inverting both sides of X =Y , resulting in X =Y , which simplifies to X =Y , so
the inverse of Y is X .
Now, assigning X = AB and Y = A+B, let us show that X +Y = 1 and XY = 0.
First,

X +Y = AB+(A+B) Substitution

= AB+(A+B)(1) A1 = A

= AB+(A+B)(A+A) A+A = 1

= AB+AA+AA+BA+BA Distributive Property

= AB+0+A+AB+BA AA = 0,AA = A,Commutative Prop

= A(B+B)+A+BA Distributive Property

= A(1)+A+BA B+B = 1
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= 1+BA A1 = A,A+A = 1
= 1. 1+A = 1

Next,

XY = AB(A+B) Substitution

= ABA+ABB Distributive Property

= AAB+ABB Commutative Property

= 0B+A0 AA = 0
= 0+0 A0 = 0
= 0.

Since X +Y = 1 and XY = 0, X =Y , and so AB = A+B, which is De Morgan’s
Law. ⊓⊔
(The square symbol signals the end of a proof.)

• A+B = AB. The left-hand side is 1 when the OR of A and B is 0, which only
occurs when A and B are both 0. The right-hand side is 1 only when A and B
are both 0. So, the two sides are equal. Logically, this says that A or B is false,
since it is false that neither A or B are true, both A and B must be false. In
Exercise 1.12, this statement that NOR and negative-AND are equivalent was
proved using truth tables. As with the previous point, the following algebraic
proof is more complicated, so consider it optional.

Proof. The proof is very similar to the previous one, but we take X = A+B and
Y = AB. First, we show that X +Y = 1:

X +Y = (A+B)+AB = (A+B)(A+A)+AB = AA+AA+BA+BA+AB

= (A+BA)+A(B+B) = A+A = 1.

Next, we show that XY = 0:

XY = (A+B)AB = AAB+BAB = 0B+A0 = 0.

Since X +Y = 1 and XY = 0, X =Y , and so A+B = AB, which is De Morgan’s
Law. ⊓⊔

Symbolically, breaking the NOT overline bar into two can be done at the expense of
changing AND to OR, or vice versa. A useful mnemonic for it is, “Break the line,
change the sign!”

In our previous discussion of universal gates, we showed that the NOT of A could
be implemented by making A both inputs of a NAND gate. We can now prove this
algebraically using De Morgan’s Law. Starting with the NAND of A with itself,

AA = A+A = A.
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We also showed that the OR gate, A+B, could be implemented using three NOTs
and one AND, AB. We proved this by writing the truth table, but now we can also
prove it algebraically using De Morgan’s theorem:

AB = A+B = A+B.

Similarly, we showed in Exercise 1.27 using a truth table that the AND gate, AB,
could be implemented using three NOTs and one OR, A+B. Using De Morgan’s
theorem,

A+B = AB = AB.

1.4.6 Circuit Simplification

Using these boolean identities, let us go through three examples of simplifying cir-
cuits using boolean algebra, beginning with the example from the beginning of the
section.

1. Back to the example that started this section, let us show that ABC +ABC +
ABC+ABC = A+B+AC using boolean algebra:

ABC+ABC+ABC+ABC = AB(C+C)+A(B+B)C Distributive Property

= AB1+A1C A+A = 1

= AB+AC A1 = A

= A+B+AC. De Morgan’s Law

Note the second-to-last line uses three NOT gates, two AND gates, and one OR
gate, whereas the last line uses two NOT gates, one AND gate, and two OR
gates, so it uses one fewer gate.

2. As another example, consider the following circuit with seven gates:

ABC +ABC

A

B

C

This circuit implements ABC+ABC. Let us use boolean algebra to simplify it:
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ABC+ABC = (A+B)C+ABC De Morgan’s Law

= (A+B)C+ABC B = B

= AC+BC+ABC Distributive Property

= AC+(1+A)BC Distributive Property

= AC+1BC 1+A = 1

= AC+BC 1B = B

= (A+B)C. Distributive Property

This complicated circuit is equivalent to (A+B)C, which only has three gates:

(A+B)C

A

B

C

3. For our third example, we have (A+B)(A+B+C)C:

(A+B)(A+B + C)C
C

A

B

As drawn, it has five gates. Two of the gates, however, have three inputs, and if
we were to replace each of them with two two-bit gates, we would have seven
gates total. Simplifying it,

(A+B)(A+B+C)C

= AAC+ABC+ACC+BAC+BBC+BCC Distributive Property

= 0C+ABC+A0+BAC+BC+B0 AA = 0,BB = B

= ABC+BAC+BC A0 = 0,A+0 = A

= (A+A+1)BC Distributive Property

= (1)BC A + 1 = 1

= BC. 1A = A
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So, the output of the circuit is only dependent on B and C, not A. It only needs
one NOT gate and one AND gate.

Exercise 1.34. Simplify A(A+B). Hint: Your final result should be a single logic gate.

Exercise 1.35. Simplify (A+B)(A+B+C). Hint: Your final result should have one NOT gate and
two OR gates.

Exercise 1.36. Simplify the following circuit:

A
B
C

Exercise 1.37. Consider the following truth table with input bits A, B, and C:

A B C Output
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

(a) Create a circuit consisting of NOT, AND, and OR gates that implements the truth table.
(b) Simplify your previous circuit using boolean algebra.

1.5 Reversible Logic Gates

1.5.1 Reversible Gates

A reversible gate, is a logic gate where, given the output(s) of the gate, we can
always determine what the input(s) was (were). An example is the NOT gate:
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A A

A A
0 1
1 0

From its truth table, the outputs are unique, so it is always possible to reverse the
operation. That is, if we know that the output of the NOT gate is 1, we know that the
input must have been 0, and if we know that the output is 0, we know that the input
must have been 1. The gate is reversible because, given the output, we can always
determine the input.

1.5.2 Irreversible Gates

An irreversible gate is the opposite of a reversible gate. Given the output(s) of the
gate, it is not always possible to determine what the input(s) was (were). An example
is the AND gate:

A

B
AB

A B AB
0 0 0
0 1 0
1 0 0
1 1 1

From the truth table, if the output of the AND gate is 1, then we know with certainty
that the inputs were both 1. If the output of the gate is 0, however, then it is impos-
sible to know from this information alone which of the other three inputs (00, 01,
and 10) were used. So in general, we are unable to determine the inputs to the AND
gate from its output. Thus, it is irreversible.

Notice the AND gate has two input bits, which have four possible states (00, 01,
10, and 11), and one output bit, which has two possible states (0 and 1). Since there
are fewer possibilities for the outputs than the inputs, the gate must be irreversible.

Conversely, if there are fewer input bits than output bits, the circuit is still irre-
versible because some of the outputs will be undetermined. For example, consider
the following truth table with one input bit and two output bits:

A B C
0 0 1
1 1 0

The question, “If both outputs are 0, what was the input?” is undefined by the truth
table, so its inverse is not completely specified.

Thus, for a logic gate to be reversible, it must have the same number of input bits
and output bits. The converse is not true, however. Just because a logic gate has the
same number of input bits and output bits does not necessarily mean it is reversible.
For example, for the gates corresponding to the following truth tables, the gate on
the left is reversible, but the gate on the right is irreversible:
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A B C D
0 0 0 1
0 1 1 0
1 0 1 1
1 1 0 0

Reversible

A B C D
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Irreversible
The gate on the left is reversible because, given the output, it is always possible to
determine the input. The gate on the right is irreversible because given the output
01, one does not know if the input was 01 or 10.

Another way to contrast reversible and irreversible gates is whether information
is lost. With a reversible gate, no information is lost since we can always recover
the inputs from the outputs. With an irreversible gate, however, information is lost
since, given an output, we generally do not know what the inputs were.

Exercise 1.38. Are the following gates reversible or irreversible? (a) OR. (b) XOR. (c) NAND. (d)
NOR.

Exercise 1.39. Are the following gates reversible or irreversible?
(a) The half-adder from Section 1.3.2.
(b) A gate with two inputs (A and B) and two outputs (C and D), whose truth table is shown

below:
A B C D
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

Exercise 1.40. The Fredkin gate is depicted below:

Fredkin

A

B

C

A′

B′

C ′

It takes three inputs A, B, and C, and has three outputs A′, B′, and C′. A is the control bit. If A = 0,
then nothing happens to B and C. If A = 1, however, then B and C are swapped. The control bit is
unchanged, so A′ = A. Thus, the Fredkin gate is a controlled-SWAP gate.

(a) Write the truth table for the Fredkin gate.
(b) Based on the truth table, is the Fredkin gate reversible or irreversible? Why?

1.5.3 Toffoli Gate: A Reversible AND Gate

We have learned that the AND gate is irreversible, meaning we lose information
when we use an AND gate because we generally cannot reconstruct the inputs from
the outputs. It would be nice to have a reversible version of the AND gate, and in
this section we introduce one called the Toffoli gate.

The Toffoli gate has three inputs A, B, and C. To be reversible, it needs to have
three outputs, and they are A, B, and AB⊕C:
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Toffoli

A

B

C

A

B

AB ⊕ C

The Toffoli gate can be constructed using an AND gate and an XOR gate. We take
the AND of A and B, and we take the XOR of AB with C to get AB⊕C.

A A

B B

AB

C
AB ⊕ C

The truth table for the Toffoli gate is

A B C A B AB⊕C
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

We see from the truth table that the outputs are unique, so the Toffoli gate is re-
versible. Notice when C = 0, the third output is the AND of A and B. This can also
be seen using boolean algebra, since when C = 0, AB⊕C = AB⊕0 = AB, which is
the AND of A and B. Thus, the Toffoli gate is a reversible version of the AND gate.

From the above truth table, notice there are two rows where A = 0 and B = 0,
and the third outputs of these two rows are opposite each other. Similarly, there are
two rows where A = 0 and B = 1, and the third outputs are again opposite each
other. This is true for every pair of rows with fixed A and B, and it ensures each
output of the truth table is unique, so the circuit is reversible. This observation that
each pair of rows has opposite third outputs can be proven using boolean algebra.
From before, when C = 0, the third output is AB. When C = 1, the third output is
AB⊕C = AB⊕ 1 = AB, so it is opposite AB. Furthermore, since AB is the NAND
of A and B, and since NAND is universal, the Toffoli gate is also universal.

Also from the truth table, notice the third bit is flipped when A and B are both 1.
For this reason, the Toffoli gate is also called the controlled-controlled-NOT gate or
CCNOT gate. Whether the third bit is flipped is controlled by whether the first two
bits are 1. That is, if A = B = 1, then the Toffoli gate flips C, and otherwise it does
nothing.
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Exercise 1.41. Consider the anti-Toffoli gate, which flips the third bit if the first two bits are both
0:

Anti-
Toffoli

A

B

C

A

B

AB ⊕ C

(a) Write the truth table for the anti-Toffoli gate.
(b) In the above picture of the anti-Toffoli gate, AB appears in the third output. Which law from

boolean algebra says that this is equal to A+B?
(c) When C = 0, is the third output the AND, OR, XOR, NAND, or NOR of A and B?
(d) When C = 1, is the third output the AND, OR, XOR, NAND, or NOR of A and B?
(e) Construct an anti-Toffoli gate using one Toffoli gate and four NOT gates.

1.5.4 Making Irreversible Gates Reversible

In the last section, we showed that the AND gate can be made reversible by XORing
its output with a third input C. This procedure works in general, not just for AND
gates. Say a gate has inputs A and B and one output f (A,B), which is a function that
outputs 0 or 1 depending on the inputs A and B:

Gate
A

B
f(A,B)

For example, for the AND gate, the function would map f (0,0) = 0, f (0,1) = 0,
f (1,0) = 0, and f (1,1) = 1. Such a gate is irreversible because it has fewer outputs
than inputs, but we can make it reversible by XORing its output with a third input
C:

A A

B B

Gate f(A,B)

C
f(A,B)⊕ C

A B C A B f (A,B)⊕C

0 0 0 0 0 f (0,0)

0 0 1 0 0 f (0,0)

0 1 0 0 1 f (0,1)

0 1 1 0 1 f (0,1)

1 0 0 1 0 f (1,0)

1 0 1 1 0 f (1,0)

1 1 0 1 1 f (1,1)

1 1 1 1 1 f (1,1)

In the rightmost column of the truth table, we used f (A,B)⊕ 0 = f (A,B) and
f (A,B)⊕ 1 = f (A,B). So, this implements the original gate when C = 0. But, the
overall circuit is reversible. In the output, every permutation of A and B shows up
twice, once with f (A,B) and once with f (A,B), ensuring that the outputs are unique.
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We can generalize this technique several ways. First, the gate could be a function
of any number of variables. For example, say we have a gate with three inputs A, B,
C, and one output f (A,B,C):

Gate

A

B

C

f(A,B,C)

This must be irreversible because there are fewer outputs than inputs. To make it
reversible, we add a fourth input D that we XOR with f (A,B,C):

A A

B B

C C

Gate f(A,B,C)

D
f(A,B,C)⊕D

Now, when D = 0, the bottom wire outputs f (A,B,C), and when D = 1, the bottom
wire outputs f (A,B,C). The truth table for this is

A B C D A B C D⊕ f (A,B,C)

0 0 0 0 0 0 0 f (0,0,0)

0 0 0 1 0 0 0 f (0,0,0)

0 0 1 0 0 0 1 f (0,0,1)

0 0 1 1 0 0 1 f (0,0,1)

0 1 0 0 0 1 0 f (0,1,0)

0 1 0 1 0 1 0 f (0,1,0)

0 1 1 0 0 1 1 f (0,1,1)

0 1 1 1 0 1 1 f (0,1,1)

1 0 0 0 1 0 0 f (1,0,0)

1 0 0 1 1 0 0 f (1,0,0)

1 0 1 0 1 0 1 f (1,0,1)

1 0 1 1 1 0 1 f (1,0,1)

1 1 0 0 1 1 0 f (1,1,0)

1 1 0 1 1 1 0 f (1,1,0)

1 1 1 0 1 1 1 f (1,1,1)

1 1 1 1 1 1 1 f (1,1,1)
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In the output, every permutation of A, B, and C shows up twice, once with f (A,B,C)
and f (A,B,C), ensuring that the outputs are unique. So, this circuit is reversible.

We can also generalize the technique to gates with multiple outputs. For example,
say we have an irreversible gate with two inputs A and B and two outputs f (A,B)
and g(A,B), which are functions of the inputs:

Gate
A

B

f(A,B)

g(A,B)

To make this reversible, follow the same procedure, but now we add two extra inputs
and two XOR gates, one each for f (A,B) and g(A,B):

A A

B B

Gate
f(A,B)

C
f(A,B)⊕ C

g(A,B)

D
g(A,B)⊕D

As before, for the third output, when C = 0, then f (A,B)⊕C = f (A,B)⊕ 0 =
f (A,B), and when C = 1, then f (A,B)⊕C = f (A,B)⊕ 1 = f (A,B). Similarly, the
fourth output is g(A,B) when D = 0 and g(A,B) when D = 1. So, the truth table of
this circuit is
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A B C D A B C⊕ f (A,B) D⊕g(A,B)

0 0 0 0 0 0 f (0,0) g(0,0)

0 0 0 1 0 0 f (0,0) g(0,0)

0 0 1 0 0 0 f (0,0) g(0,0)

0 0 1 1 0 0 f (0,0) g(0,0)

0 1 0 0 0 1 f (0,1) g(0,1)

0 1 0 1 0 1 f (0,1) g(0,1)

0 1 1 0 0 1 f (0,1) g(0,1)

0 1 1 1 0 1 f (0,1) g(0,1)

1 0 0 0 1 0 f (1,0) g(1,0)

1 0 0 1 1 0 f (1,0) g(1,0)

1 0 1 0 1 0 f (1,0) g(1,0)

1 0 1 1 1 0 f (1,0) g(1,0)

1 1 0 0 1 1 f (1,1) g(1,1)

1 1 0 1 1 1 f (1,1) g(1,1)

1 1 1 0 1 1 f (1,1) g(1,1)

1 1 1 1 1 1 f (1,1) g(1,1)

In the output, every permutation of A and B shows up four times, once with f (A,B)
and g(A,B), once with f (A,B) and g(A,B), once with f (A,B) and g(A,B), and once
with f (A,B) and g(A,B), ensuring that the outputs are unique. So, this is reversible.

Exercise 1.42. Consider the following single-bit gates.
(a) The identity gate f (A) = A. Its truth table is

A f (A)
0 0
1 1

Is this reversible or irreversible? If it is irreversible, turn it into a reversible circuit.
(b) The “always-1’ gate f (A) = 1. Its truth table is

A 1
0 1
1 1

Is this reversible or irreversible? If it is irreversible, turn it into a reversible circuit.

Exercise 1.43. Write the truth table for XOR. Is it reversible or irreversible? If it is irreversible,
turn it into a reversible circuit, and write the truth table of the reversible circuit.

Exercise 1.44. Consider the following two-bit gates, each with two outputs.
(a) The gate

Gate
A

B

A⊕B

B
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What is the truth table corresponding to this gate? Is it reversible or irreversible? If it is
irreversible, turn it into a reversible circuit.

(b) The gate

Gate
A

B

A⊕B

AB

What is the truth table corresponding to this gate? Is it reversible or irreversible? If it is
irreversible, turn it into a reversible circuit.

Exercise 1.45. Consider the full adder from Section 1.3.3:

FA

Cin

A

B

S

Cout

Turn this into a reversible circuit.

1.6 Error Correction

1.6.1 Errors in Physical Devices

High energy particles like cosmic rays, neutrons produced in the earth’s atmosphere,
radiation from nuclear testing, and radiation from particle accelerators can strike
computers, causing bits to flip from 0 to 1 and from 1 to 0. This is known as a single
event upset.

Similarly, if we are transmitting data through the internet, then some bits may
become corrupted. For example, photons traveling through a fiber optic cable can
leak out due to imperfections in the cable. The sender may have sent a 1, but the
receiver gets a 0.

Fortunately, as long as the number of errors is limited, there are schemes to detect
and/or correct errors.

Exercise 1.46. Watch “The Universe is Hostile to Computers” by Veritasium on YouTube:

https://www.youtube.com/watch?v=AaZ_RSt0KP8

Answer the following questions and fill in the blanks.
(a) For the election in Belgium, Maria Vindevogel received 4096 extra votes because the thir-

teenth bit had flipped from 0 to 1, which added 212 = 4096 extra votes to her count. How
many extra votes would she have received if the fourteenth bit had flipped instead?

(b) “In 1978, Intel reported some strange errors popping up in their 16 kilobit dynamic ran-
dom access memory, or DRAM. Ones would to
zeros with no apparent cause. The problem turned out to be the ceramic packaging the
chip was encased in. With the demand for semiconductor packaging skyrocketing in the

https://www.youtube.com/watch?v=AaZ_RSt0KP8
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1970’s, a new manufacturing plant was constructed on the Green River in Colorado. Unfortu-
nately, this site happened to be just downstream of an old uranium mill.

made their way into the river and then into the ceramic packaging for
Intel’s microchips. Intel scientists investigating the problem found that even trace amounts of
uranium and thorium in the ceramic was were sufficient to cause problems. In their DRAM,
memory was stored as the or of electrons in a
semiconductor well. The alpha particles emitted by uranium and thorium were energetic and
ionizing enough to create electron-hole pairs in the silicon. If an alpha particle struck in just
the right place, it could create a large number of free charge carriers, causing electrons to
accumulate in the well, flipping a one to a zero. This is known as a

.”
(c) “The reason this problem was identified in the 1970s was because chip components had been

to the point where a single alpha particle could produce enough charge
to flip a bit.”

(d) “But the next year, he [Hess] conducted seven balloon flights up to an altitude of 5200 m.
And here he discovered something remarkable. While there was an initial drop in radiation
for the first several hundred meters, above one kilometer or so the level
with increasing altitude. At his his maximum height, the level of radiation was several times

than it was on the ground. The radiation appeared to be coming, not
from the earth, but from the .”

(e) “Victor Hess had discovered , high energy radia-
tion from space. But what were these rays exactly, and where were they coming from? Well,
today we know they aren’t electromagnetic rays, as many suspected, but .
Around 90% are protons, 9% are helium nuclei, and 1% are heavier nuclei. Some of them are
from the sun, but they have comparatively low energy. High energy cosmic rays moving very
close to the speed of light come from exploding stars, supernovae, in our own galaxy and
in others. And the highest energy particles are thought to come from

, including the super massive black holes at the centers of galaxies.”
(f) “But primary cosmic rays like these don’t make it down to earth’s surface. Instead, they

collide with air molecules around 25 kilometers above the ground and create new parti-
cles like pions. These collide and decay into other particles like neutrons, protons, muons,
electrons, positrons, and photons, which in turn collide with other molecules in one long

. So from a single primary cosmic ray comes a shower of particles
streaming toward the earth. It is one of these particles that investigators suspect struck a

in a computer in Belgium, flipping the thirteenth bit from a zero to a
one and giving Maria Vindevogel 4096 extra votes.”

(g) “These days, there are a number of ways computer chips are made resilient in the face of bit
flips, like (or ECC) mem-
ory.”

(h) “In 1996, IBM estimated that for each 256 megabytes of RAM, one bit flip occurs per
. And the main culprit seems to be neutrons created in the shower of

particles from .”
(i) For a commercial airplane “At cruising altitude, this increases the chance of a single event

upset by times.”
(j) “On one five day [space shuttle] mission, STS 48, there were separate

bit flips.”
(k) “Above the atmosphere, cosmic rays are so energetic sometimes you can even see them.”

“Once in a while you have your eyes closed and you’re not asleep yet, and if you wait a little
while, you occasionally will see a of light. And we think it is heavy
particles or individual bursts of energy coming from radiation that are either going through the
eyeball itself or going through the optic nerve. And the way that your body registers radiation
going through it is amazingly enough by showing you a little flash in one of your eyes just to
remind you that you are subject to the radiation of not only our sun, but

of the universe that is radiating at you.”
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1.6.2 Error Detection

The simplest way to detect errors is to repeat each bit multiple times so that multiple
physical bits encode a single logical bit. This is called the repetition code.

For example, say we use two physical bits to encode one logical bit, i.e.,

00 encodes 0,
11 encodes 1.

So, if we want to send the letter “Q” in ASCII, which is represented by the seven-bit
string 1010001, we would actually send

11 00 11 00 00 00 11.

If one of the physical bits is flipped, say due to a single event upset or transmis-
sion error, then instead of receiving 00 or 11, the recipient would receive

01 or 10.

If the recipient gets either of these pairs, they know that an error has occurred. This
is an example of an error-detecting code. The recipient can then request that the
message be resent.

The binary strings 00, 01, 10, and 11 are called codewords.
The parity of a bit string is whether the bit string has an even or odd number of

1’s. The codewords 00 and 11 have even parity, while the codewords 01 an 10 have
odd parity, so parity can be used to distinguish whether an error has occurred. Such
indications of errors are called error syndromes.

Note parity can be computed using XOR, since 0⊕0 = 1⊕1 = 0 indicates even
parity, while 0⊕1 = 1⊕0 = 1 indicates odd parity.

If more than one error occurs, then our encoding is unable to reliably detect
the error. For example, if we transmit 00 and both bits get flipped to 11, then the
recipient has no way of knowing that an error occurred. So, if we use the repetition
code with two physical bits per logical bit, only one-bit errors can be detected.

Exercise 1.47. Another error-detecting scheme is to send a parity bit. For example, say I want to
transmit to you the character “Q” in ASCII, which is encoded by seven bits 1010001. The parity
of this bit string is odd, since there is an odd number of 1’s in the string. (Alternatively, taking the
XOR of all the bits yields 1.) I append this parity of 1 to the transmission, so I send you the eight
bits 10100011.
Say the bits you actually receive are 11100011.

(a) Calculate the parity of the first seven bits you received.
(b) Does the parity you calculated in part (a) match the parity bit (the last bit)?
(c) Did an error occur in the transmission? Why or why not?
(d) Can this scheme reliably detect if more than one error occurred? Why or why not?
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1.6.3 Error Correction

Besides being able to detect errors, it would be nice to also fix them. We call this
error correction.

For example, if we use three bits for the repetition code, then

000 encodes 0,
111 encodes 1.

Now if a single bit gets flipped, the possible codewords are 001, 010, 100, 110, 101,
and 011. We can correct the error by taking the majority vote:

001,010,100→ 000,
110,101,011→ 111.

This is an example of an error-correcting code.
This majority rule can also be implemented using parity checks as the error syn-

dromes. Let us calculate the parity of the left two bits and the parity of the right two
bits. Tabulating these for each possible codeword b2b1b0:

Codeword b2⊕b1 b1⊕b0

000 0 0
001 0 1
010 1 1
011 1 0
100 1 0
101 1 1
110 0 1
111 0 0

So if both parity bits are 0, the codeword is either 000 or 111, and there is no error.
If the left parity bit is 0 and the right is 1, then the codeword is either 001 or 110,
and the rightmost bit was flipped. If the left parity bit is 1 and the second is 0, then
the codeword is either 011 or 100, and the left bit was flipped. Finally, if both parity
bits are 1, then the codeword is 010 or 101, and the middle bit was flipped.

Note using parity checks allows us to detect and correct errors without needing
to know the codeword. If we know that a bit flip occurred in the middle bit, we do
not need to know if the codeword was 010 or 101. We can simply flip the middle
bit to correct it, and proceed. This will be an important notion in quantum error
correction, where determining the codeword can ruin the computation, so we must
be able to correct errors without knowing the precise codeword.

Since this error-correcting code uses three physical bits to encode a logical bit, it
is more likely that a bit will flip because there are more of them. If a single bit flips,
it can be corrected. If two or all three bits flip, however, we cannot correct the error.
We say an uncorrectable error has occurred. Using a little math, we can determine
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when error correction decreases the chance of an uncorrectable error because we
can fix single bit flips, or when it increases the chance of an uncorrectable error
because there are more bits to flip.

First, let p denote the probability of a single bit flipping. Without error correction,
if the bit flips an uncorrectable error has occurred, so the probability of an uncor-
rectable occurring is p. Now with three physical bits representing one logical bit,
single-bit errors can be corrected, so an uncorrectable error only occurs when two
or three of the bits get flipped. The probability of two specific bits getting flipped
while the third remains unflipped is p2(1− p), where p2 comes from the two bits
getting flipped, and 1− p comes from the unflipped third bit. Since there are three
combinations for two of the three bits to be flipped (the two bits could be the first
two bits, the last two bits, or the first and last bits), the probability of any two bits
getting flipped is 3p2(1− p). Another way to get the coefficient of 3 is using the
combination “3 choose 2,” where “n choose k” is

nCk =
n!

k!(n− k)!
,

where the exclamation point denotes factorial, e.g., 5! = 5 · 4 · 3 · 2 · 1 and 0! = 1.
Combinations are also called binomial coefficients.

Binomial coefficients can be calculated manually, perhaps with the help of a
calculator. They can also be calculated using a computer algebra system, which is
computer software that solves problems using algebraic manipulation and more. In
this textbook, we will provide calculations in both Mathematica and SageMath, and
you can choose whichever you prefer.

• Mathematica. Among physicists, a popular computer algebra system is Math-
ematica. It is proprietary, however, so it must be purchased, although many
universities pay for a Mathematica subscription that allows their students to
use it. The combination nCk can be computing using Mathematica’s Binomial
function. For example, 3C2 is:

Binomial[3,2]

The output of this is 3, as expected.
• SageMath. Another popular computer algebra system is SageMath, often simply

called Sage. It is based on the Python programming language. One of the main
benefits of SageMath is that it is open-source, so anyone can download it from
sagemath.org and install it for free. SageMath’s binomial function can be
used to compute the combination nCk. For example, 3C2 is:

sage: binomial(3,2)
3

We see that the answer is 3, as expected.

An uncorrectable error also occurs when all three bits get flipped, and the proba-
bility of that occurring is p3. The coefficient of this is simply 1 because there is only
1 way to choose 3 bits out of 3. Alternatively, 3C3 = 1. Adding together the prob-
ability of two bits flipping [3p2(1− p)] with the probability of three bits flipping

sagemath.org
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(p3), the probability of an uncorrectable error occurring is

3p2(1− p)+ p3.

As long as this is less than p, which is the probability that an error occurs without
error correction, then it is favorable to do error correction. That is, it is favorable to
do error correction when

3p2(1− p)+ p3 < p.

We can solve this inequality using a computer algebra system. As promised, we will
provide both Mathematica and SageMath code:

• Mathematica. Using Mathematica’s Reduce function, the inequality can be
solved using

Reduce[3 pˆ2(1-p) + pˆ3 < p, p]

Executing this, the output is

0 < p <
1
2
|| p > 1.

In this result, the double bar || means “or.” So, there are two situations when
the 3-bit repetition code is better than no error correction, when 0 < p < 1/2 or
when p > 1.

• SageMath. Using SageMath’s solve function, the inequality can be solved us-
ing

sage: p = var('p')
sage: solve(3*p**2*(1-p) + p**3 < p, p)
[[p > 0, p < (1/2)], [p > 1]]

So, there are two situations when the 3-bit repetition code is better than no error
correction. The first is when p > 0 and p < 1/2. That is, when 0 < p < 1/2.
The second is when p > 1.

Thus, using either Mathematica or SageMath, the repetition code with three bits is
better when the probability of a single bit flip is

0 < p <
1
2
, p > 1.

Since p is a probability, it cannot be less than 0 or greater than 1. So, the 3-bit
repetition code is better than no error correction when

p <
1
2
.

Thus, as long as the error probability is less than 1/2, error correction is beneficial.
For example, if p = 0.1, then 3p2(1− p)+ p3 = 0.028, so there is a smaller chance
that an uncorrectable error occurs. If p = 0.6, then 3p2(1− p)+ p3 = 0.648, so an
uncorrectable error is more likely to occur.
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Exercise 1.48. Using the repetition code, you have a three-bit string that encodes a logical bit.
(a) If the parity of the left two bits is odd, and the parity of the right two bits is also odd, has a

single-bit error occurred? If yes, which bit was flipped (the left, middle, or right bit)?
(b) If the parity of the left two bits is odd, but the parity of the right two bits is even, has a

single-bit error occurred? If yes, which bit was flipped (the left, middle, or right bit)?
(c) If the probability of a single bit flipping is p= 0.2, what is the probability that an uncorrectable

error occurs with the 3-bit repetition code? In this case, does the 3-bit repetition code increase
or decrease the probability of an uncorrectable error occurring?

(d) If the probability of a single bit flipping is p= 0.7, what is the probability that an uncorrectable
error occurs with the 3-bit repetition code? In this case, does the 3-bit repetition code increase
or decrease the probability of an uncorrectable error occurring?

Exercise 1.49. Using the repetition code, you have a five-bit string that encodes a logical bit. This
allows for the correction of two-bit errors, since three correct bits is the majority vote over the two
incorrect bits. Say you receive a codeword b4b3b2b1b0.

(a) If b4⊕b3 = 0, b3⊕b2 = 0, b2⊕b1 = 1, and b1⊕b0 = 1, did an error occur? If an error has
occurred, which bit(s) were flipped?

(b) If b4⊕b3 = 0, b3⊕b2 = 1, b2⊕b1 = 0, and b1⊕b0 = 1, did an error occur? If an error has
occurred, which bit(s) were flipped?

(c) If the probability of a single bit flipping is p, what is the probability of an uncorrectable error
occurring with this repetition code of 5 bits? Hint: One and two-bit flips can be corrected,
so uncorrectable errors occur if three, four, or five bits are flipped. The probability of each
occurring also depends on the number of combinations of bits flipping.

(d) For what values of p is your result in part (c) less than p (the error rate without error correc-
tion)?

(e) If p = 0.1, what is the probability that an uncorrectable error occurs with the 5-bit repetition
code? In this case, does the 5-bit repetition code increase or decrease the probability of an
uncorrectable error occurring?

(f) For comparison, if p = 0.1, what is the probability that an uncorrectable error occurs with the
3-bit repetition code? How does it compare to the 5-bit code?

1.7 Computational Complexity

1.7.1 Asymptotic Notation

Say we want to add two 4-bit numbers using the ripple-carry adder from Sec-
tion 1.3.4. This takes one half-adder, which has two logic gates, and three full-
adders, which each have five logic gates, for a total of 2+3 ·5 = 17 logic gates. If
we generalize this and add two n-bit numbers with a ripple-carry adder, it takes one
half-adder and (n− 1) full-adders, for a total of 2+(n− 1)5 = 5n− 3 logic gates.
So, as the length n of the binary numbers increases, the number of logic gates 5n−3
scales linearly with n. This scaling can be expressed through asymptotic notation.

Big-O notation is used to give an upper bound on the asymptotic behavior of a
function. We write 5n− 3 = O(n2) to mean that 5n− 3 scales less than or equal to
n2 for large n. Mathematically, f (n) = O(g(n)) means there exists constants c and
n0 such that f (n) ≤ cg(n) for all values of n greater than n0. Some other examples
include 5n− 3 = O(n log(n)) and 5n− 3 = O(2n). Since the scaling is “less than
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or equal to,” we can also write 5n− 3 = O(n). Big-O is the most commonly used
asymptotic notation, and it is useful for specifying the worst-case behavior of an
algorithm. In our case, the number of logic gates needed to add two binary numbers
of length n is no worse than linear, i.e., O(n).

If we want the inequality to be strictly “less than,” we use little-o notation. So we
can write 5n−3 = o(n2), but 5n−3 ̸= o(n). Mathematically, f (n) = o(g(n)) means
for all c > 0 there exists some n0 (which may depend on c) such that f (n) < cg(n)
for all values of n greater than n0.

Similarly, a lower bound on the asymptotic behavior of a function is denoted
using big-Omega notation. We can write 5n−3 = Ω(

√
n) to mean that 5n−3 scales

greater than or equal to
√

n for large n. Mathematically, f (n) = Ω(g(n)) means
there exists constants c and n0 such that f (n) ≥ cg(n) for all values of n greater
than n0. We could also write 5n− 3 = Ω(1) to mean that 5n− 3 is lower bounded
by a constant. Since the inequality is “greater than or equal to,” we can also write
5n−3 = Ω(n).

As before, if we want the inequality to be strictly “greater than,” we use a low-
ercase symbol, or little-omega notation. So, we can write 5n− 3 = ω(

√
n), but

5n− 3 ̸= ω(n). Mathematically, f (n) = ω(g(n)) means for all c > 0 there exists
some n0 (which may depend on c) such that f (n)> cg(n) for all values of n greater
than n0.

Finally, to specify that 5n−3 scales linearly with n, we use big-Theta notation.
We write this as 5n− 3 = Θ(n), and it means that 5n− 3 is both upper bounded
and lower bounded by n, asymptotically. That is, 5n−3 = O(n) and 5n−3 = Ω(n).
Combining the mathematical definitions of each, f (n) =Θ(g(n)) means there exists
constants c1, c2, and n0 such that c1g(n)≤ f (n)≤ c2g(n) for all values of n greater
than n0.

These asymptotic notations are summarized in Table 1.2.

Table 1.2: Summary of asymptotic notations. The mathematical symbol ∃ means
“there exists,” ∋ means “such that,” and ∀ means “for all.”

Notation Description Definition

f (n) = O(g(n)) f scales ≤ g ∃ c,n0 ∋ f (n)≤ cg(n) ∀ n > n0
f (n) = o(g(n)) f scales < g ∀ c > 0 ∃ n0 ∋ f (n)< cg(n) ∀ n > n0
f (n) = Ω(g(n)) f scales ≥ g ∃ c,n0 ∋ f (n)≥ cg(n) ∀ n > n0
f (n) = ω(g(n)) f scales > g ∀ c > 0 ∃ n0 ∋ f (n)> cg(n) ∀ n > n0
f (n) =Θ(g(n)) f scales = g ∃ c1,c2,n0 ∋ c1g(n)≤ f (n)≤ c2g(n) ∀ n > n0

Exercise 1.50. Consider the following functions, one quadratic and another cubic:

f (n) = 5247n2, g(n) = 11n3.

(a) Evaluate both functions when n = 100. Which is bigger, f (100) or g(100)?
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(b) Evaluate both functions when n = 500. Which is bigger, f (500) or g(500)?
(c) At what value of n does g(n) surpass f (n)?
(d) Label each of the following statements as true or false:

f (n) = O(g(n)) true / false

f (n) = o(g(n)) true / false

f (n) =Θ(g(n)) true / false

f (n) = Ω(g(n)) true / false

f (n) = ω(g(n)) true / false

Exercise 1.51. Match each function to a possible asymptotic notation. Although each asymptotic
notation can match multiple functions, each should only be used once.

(a) 3n2 +7n+4 (i) o(
√

n)

(b) logn (ii) Ω(2n)

(c) 5en (iii) Θ(n2)

(d) π
√

n (iv) O(1)

(e) π (v) ω(1)

1.7.2 Complexity Classes

Since each logic gate takes some time to apply, we say an algorithm that utilizes,
say, O(n) logic gates, takes O(n) time, ignoring the fact that some of the logic gates
can be done in parallel.

In computer science, an algorithm is called efficient if it takes polynomial time
or less. Polynomial time means the number of gates scales as a polynomial in n,
such as the ripple-carry adder’s 5n−3 gates, or algorithms that take n2, n3, or n1000

gates. Any other power function is also efficient, such as n2.5, since this scales less
than the polynomial n3. Another example is

√
n = n0.5, since this scales less than

the polynomial n. Algorithms that takes constant time O(1) or logarithmic time
O(log(n)) are faster than polynomial time, so they are also efficient. A loglinear
runtime O(n log(n)) is also efficient, since it grows faster than n but slower than
n2. On the other hand, an algorithm is inefficient if it takes more than polynomial
time, called superpolynomial time. This includes algorithms that take exponential
time, such as 2n or en/1000. It also includes algorithms that take subexponential time,
which are less than exponential time but greater than polynomial time, such as 2n1/3

.
Often, we call problems easy if their solutions are efficient, and problems hard

if their solutions are inefficient. For example, adding numbers is easy because there
is a polynomial-time algorithm for it. In practice, however, an easy problem whose
algorithm takes n1000 time may be harder than a hard problem that takes en/1000

time because, for small problem sizes, the polynomial is bigger than the exponen-
tial. Despite this, distinguishing between easy and hard problems, or efficient and
inefficient algorithms, in this manner is still useful.
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Different problems are easier or harder than others, and we classify them using
complexity classes, or classes of problems of some complexity or difficulty. Prob-
lems that can be solved efficiently (in polynomial time) by a classical computer are
in the complexity class P, which stands for Polynomial-Time. Some problems in P
include:

• Matchmaking in the “stable marriage problem.” Given n men and n women
who have ranked the other group in order of preference, marry the men with the
women so that no two people would rather be with each other than with their
spouses. The Gale-Shapley algorithm solves this in O(n2) time.

• Determining if a number is prime. Recall a prime number is a whole number
greater than 1 whose only factors are 1 and itself, so 2, 3, 5, 7, 11, and 13 are
all prime numbers, but 4 is not prime because it is equal to 2× 2, and 6 is not
prime because it is equal to 2×3. If the number to be tested has n digits, then the
Agrawal–Kayal–Saxena (AKS) class of algorithms can determine if the number
is prime in O(n6) time, ignoring factors log(n).

• Maximizing a linear function constrained by linear inequalities, also known as
“linear programming.” If there are n variables, algorithms exist that run in O(n3)
and faster.

Another complexity class is the problems for which a solution can be quickly
verified by a computer in polynomial time. This class is called NP (the N stands
for a non-deterministic Turing machine—more on this later, and the P stands for
polynomial), and it includes problems such as:

• Factoring, since it is easy to multiply the factors together to verify it equals the
original number.

• Testing if two networks are equivalent, since it is easy to verify that two net-
works are equivalent if a map between the two is provided. This is known as the
“graph isomorphism” problem.

Many problems of practical importance are in the class NP.
Certain problems within NP have a special property called completeness, and

we call these problems NP-COMPLETE. If we can find an efficient solution to any
NP-COMPLETE problem, then we can use it to find an efficient solution to any NP
problem. That is, the overhead in applying the algorithm to other NP problems is at
most polynomial, so an efficient solution to one NP-COMPLETE problem yields an
efficient solution to all NP problems. Some NP-COMPLETE problems include:

• Solving n×n Sudoku puzzles.
• Finding the shortest possible tour that visits a list of cities exactly once and

returns to its starting point, known as the “traveling salesman problem.”
• Determining whether a tour that visits each location once and returns to its

starting point exists, which is called the “Hamiltonian path problem.”
• Determining whether a set of items can fit into certain boxes, known as the “bin

packing problem.”

A literal million dollar question is whether P and NP are equal. The Clay Math-
ematics Institute will pay one million U.S. dollars to whomever can prove whether
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the problems whose solutions are efficiently found are the same as the problems
whose solutions are efficiently verified. It is known that all problems in P are con-
tained within NP, since if one can efficiently solve a problem, one can also efficiently
check proposed solutions by comparing them to the answer. But, it is unknown if
NP contains any problems that are not in P. The general conjecture is that P ̸= NP.

Another complexity class is PSPACE, which contains all the problems that can
be solved by a computer using a polynomial amount of memory, without any limits
on time. Generalizations of many games are in PSPACE, such as:

• Determining whether a winning strategy exists for the game of checkers gener-
alised to an n×n board.

• Winning a generalized level of Super Mario Bros.

It is known that NP is contained in PSPACE because one has unlimited of time
to check all possible answers. Although it seems like PSPACE should be a larger
class of problems than NP, there is currently no proof. The general conjecture is
that NP ̸= PSPACE. It is even unknown if PSPACE is larger than P, but again the
conjecture is that P ̸= PSPACE.

To summarize, it is believed that P ̸=NP and NP ̸=PSPACE (and hence PSPACE ̸=
P), but none of these relations have been proved. These suspected relationships are
summarized in Fig. 1.1.

PSPACE

NP

NP-
complete

P

Fig. 1.1: The generally accepted relationships between the complexity classes NP,
NP-COMPLETE, P, and PSPACE.

Exercise 1.52. Consider the following runtimes. Is each efficient or inefficient? (a) log2(n) (b) n3

(c) n5 log4(n) (d) 2
√

n (e) 2n/2 (f) n!
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Exercise 1.53. Visit https://www.complexityzoo.net. Look up the complexity class
BPP.

(a) What does BPP stand for?
(b) BPP often identified as what?

Exercise 1.54. What is a problem in NP that is believed to not be in P?

Exercise 1.55. Visit the Clay Mathematics Institute website at https://claymath.org and
find the Millenium Problems.

(a) List the seven Millenium Prize Problems. Is each problem solved or unsolved?
(b) Who first proposed the P vs NP problem? In what year?

Exercise 1.56. Visit the Wikipedia list of NP-COMPLETE problems at https://en.wikiped
ia.org/wiki/List_of_NP-complete_problems. Describe three NP-COMPLETE prob-
lems.

1.8 Turing Machines

So far, we have examined circuit-based computers consisting of bits and logic gates.
While circuit-based computers are very useful in practice, they are not always the
best kind of computer to study mathematically. Other types of computers, or models
of computation, exist and may be more convenient. In this section, we examine the
Turing machine, which was introduced in 1936 and is still used today by computer
scientists who study the abilities and limitations of computers.

1.8.1 Components

A Turing machine consists of four parts:

▷ 0 0 1 0 . . .

qs
(head)

(state)

(tape)

Program
(qs, ▷, ▷,→, q1)

...

1. A tape divided into cells, each with a symbol from some finite alphabet. The
left end of the tape is denoted by ▷, and the right end of the tape can extend as
far as needed. In this textbook, the remaining cells can contain nothing (blank),
0, or 1.

2. A head that can read or write to the tape, and then move left one cell (←), right
one cell (→), or stay put (•).

https://www.complexityzoo.net
https://claymath.org
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
https://en.wikipedia.org/wiki/List_of_NP-complete_problems
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3. A register that stores the state of the Turing machine. Only a finite number
of states are allowed. Two special states are required, a starting state qs and a
halting state qh indicating that the program has finished.

4. A list of instructions or program. For each step, the Turing machine starts at the
top of the list of instructions and goes down the list until it finds a line matching
the current state of the machine and the current symbol on the tape. Then it
write to the tape, moves according to the instruction, and updates the state of
the machine.

While modern computers are not built like this, Turing machines can compute ev-
erything that a circuit-based computer can compute. But, they are easier to describe
mathematically, so they allow computer scientists to study the power and limitations
of computers. Before we discuss this, let us look at an example of how a Turing ma-
chine can compute something.

Exercise 1.57. Visit the Wikipedia page on Model of Computation at https://en.wikiped
ia.org/wiki/Model_of_computation. Describe three models of computation besides
the Turing model.

1.8.2 Incrementing Binary Numbers

Let us show how a Turing machine can increment (add 1 to) a binary number. First,
consider incrementing 1011 by hand:

(carry) 0 1 1

1011
“+” 0001

(sum) 1100

From this process, we can deduce an algorithm for how to increment binary num-
bers. Starting at the rightmost column, when we add 1 to 1, we get 0, and we carry a
1 to the next column. Again, we add 1 to 1 and get 0, carrying 1 to the next column.
Now we add 1 to 0, which yields 1, and nothing carries. Any remaining digits will
be unchanged. Thus, to increment binary numbers, we can flip all 1’s on the right to
0’s, and when we reach the rightmost 0, we flip it to a 1.

This computation can be done using a Turing machine using the following pro-
gram:

https://en.wikipedia.org/wiki/Model_of_computation
https://en.wikipedia.org/wiki/Model_of_computation
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Current State Current Tape Write to Tape Move Update State

qs ▷ ▷ → q1
q1 0 0 → q1
q1 1 1 → q1
q1 ← q2
q2 1 0 ← q2
q2 0 1 • qh

We will show that this correctly increments 1011 in a moment, but first let us give
an overview of the program. The first line says that when the Turing machine starts,
it should move right and change states to q1. In the next three lines, the state is q1,
and the Turing machine keeps moving right until it reaches a blank cell, at which
it moves left and changes to the state q2. This moves the head all the way to the
rightmost bit. Now in the state q2, the last two lines say to flip any 1’s to 0’s, but the
moment we reach a 0, we should flip it to a 1 and then halt.

Now, let us follow the program to increment 1011. The Turing machine begins
in the state qs with its head at the leftmost cell:

▷ 1 0 1 1 . . .

qs

The machine goes through its list of instructions from top to bottom, searching for
the first instruction that matches its current state qs with current tape symbol ▷. It
finds the entry (qs,▷,▷,→,q1). So it writes ▷ to the tape (so it is unchanged), moves
one cell right, and updates the state register to q1:

▷ 1 0 1 1 . . .

q1

The Turing machine again goes through its list of instructions from top to bottom,
searching for the first instruction that matches its current state q1 with current tape
symbol 1. It finds the entry (q1,1,1,→,q1). So it writes 1 to the tape (so it is un-
changed), moves one cell right, and sets the state register to q1 (so it is unchanged):

▷ 1 0 1 1 . . .

q1

Now the head reads 0 on the tape, so it searches its program from top to bottom,
finding the instruction (q1,0,0,→,q1). Following this, it writes 0 to the tape (so it
is unchanged), moves the head right, and sets the state to q1 (so it is unchanged):

▷ 1 0 1 1 . . .

q1
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Now the tape reads 1, so the machine follows the instruction (q1,1,1,→,q1). Fol-
lowing this, the head moves right again (while the tape and state are unchanged):

▷ 1 0 1 1 . . .

q1

The machine again follows the instruction (q1,1,1,→,q1), moving the head right:

▷ 1 0 1 1 . . .

q1

Thus far, while the Turing machine was in the state q1, the head moved to the right
past all the bits. Now the head reads blank, so the Turing machine follows (q1, , ,←
,q2), writing a blank symbol (so it is unchanged), moving the head left, and updating
the state to q2:

▷ 1 0 1 1 . . .

q2

The head is now at the rightmost bit, and the Turing machine follows (q2,1,0,←
,q2), writing a 0 and moving left:

▷ 1 0 1 0 . . .

q2

The Turing machine follows (q2,1,0,←,q2) again, writing a 0 and moving left:

▷ 1 0 0 0 . . .

q2

Finally, the Turing machine follows (q2,0,1,•,qh), writing a 1 and halting:

▷ 1 1 0 0 . . .

qh

So in the state q2, the Turing machine moves to the left, flipping all 1’s to 0’s, until
it sees the first 0, at which it flips it to a 1 and halts. As seen on the final tape, we
have incremented 1011 to 1100, as expected.

Exercise 1.58. A Turing machine follows the program shown below:
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Current State Current Tape Write to Tape Move Update State

qs ▷ ▷ → q1
q1 0 0 → q2
q1 1 1 → q1
q2 0 0 → q2
q2 1 1 → q2
q1 0 • qh
q2 1 • qh

(a) Apply this program to the tape shown to the right until it
halts. What is the resulting tape? ▷ 0 0 . . .

qs

(b) Apply this program to the tape shown to the right until it
halts. What is the resulting tape? ▷ 0 1 . . .

qs

(c) Apply this program to the tape shown to the right until it
halts. What is the resulting tape? ▷ 1 0 . . .

qs

(d) Apply this program to the tape shown to the right until it
halts. What is the resulting tape? ▷ 1 1 . . .

qs

(e) From your answers in parts (a) through (d), what does this Turing machine compute?
(f) What does the program do if the tape initially has more than two bits?

Exercise 1.59. Write a program for a Turing machine that calculates the parity of a bit string of
arbitrary length. Assume the tape starts with the symbol ▷ and is followed by the bit string, which
can be any length, followed by blanks. Write the parity as 0 or 1 (even or odd) to the blank after
the bit string, and then halt.

1.8.3 Church-Turing Thesis

Turing machines are important for many reasons, but especially because of two
long-held beliefs regarding computation:

• The Church-Turing Thesis says that everything that is computable can be com-
puted with a Turing machine, although it could take a long time (e.g., exponen-
tial time).
This correctly suggests that there are problems that cannot be computed. They
are called undecidable problems, the most famous of which is the halting prob-
lem (see Exercise 1.60). Aside from such uncomputable problems, everything
else can be computed, and it can be computed using a Turing machine.
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• The Strong Church-Turing Thesis says that any model of computation, be it
the circuit model or something else, can be simulated by a probabilistic Turing
machine with at most polynomial overhead.
A probabilistic Turing machine is a Turing machine where the state of the sys-
tem can be set probabilistically, such as by the flip of a coin. The Strong Church-
Turing Thesis says that a probabilistic Turing Machine can perform the same
computations as any other kind of computer, and it only needs at most polyno-
mially more steps than the other computer. This means an efficient algorithm
on one kind of computer is also an efficient algorithm on a probabilistic Turing
machine, since adding a polynomial overhead to a polynomial time algorithm
is still a polynomial time algorithm. This is why defining efficient algorithms as
those that run in polynomial time or faster is a useful notion.

Quantum computers would not violate the regular Church-Turing Thesis. That
is, what is impossible to compute remains impossible. The hope, however, is that
quantum computers can violate the Strong Church-Turing Thesis, that they will ef-
ficiently solve problems that are inefficient on classical computers.

While there is no proof of this hope, there is strong evidence. Here are three
examples:

• Quantum computers can efficiently factor numbers using Shor’s algorithm,
which will be covered near the end of this book. Factoring is believed to be
hard for classical computers, and the best known classical algorithm for fac-
toring runs in subexponential time. Note factoring is in NP since it is easy to
check if proposed factors are correct by multiplying them, but no algorithm has
been found to put the problem in P. The believed difficulty of factoring is the
basis for RSA, a widely used type of cryptography. RSA will be explained in
Section 6.6.2. This would be a very useful application of quantum computers,
but currently, quantum computers are too small to factor anything larger than
21 = 3×7.

• Determining the results of random quantum programs is called random circuit
sampling. This is easy for quantum computers, but it is believed to be hard
for classical computers. The best known classical algorithm takes exponential
time. In 2019, scientists at Google and the University of California, Santa Bar-
bara (UCSB) used a quantum processor to perform random circuit sampling. It
took their quantum processor about three minutes and twenty seconds. In con-
trast, they argued that a typical classical computer would take approximately
10 000 years. Shortly after this result was published, IBM argued that Summit,
the largest supercomputer in the world at the time, could theoretically perform
the computation in 2.5 days rather than 10 000 years if it also used its mas-
sive amounts of hard drive disk storage. This approach could use roughly 72
petabytes of storage3. In practice, using an entire supercomputer for any amount
of time is prohibitive, let alone for 2.5 days. This illustrates just how hard it is

3 For the advanced reader, the experiment used 53 quantum bits. It takes 253 numbers to write
down the state of these quantum bits, and if each number uses 8 bytes, storing the entire quantum
state would take 253 ·8 = 256 = 72.058×1015 bytes = 72.058 petabytes.
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for classical computers, as we currently understand them, to perform random
circuit sampling; either a ridiculous amount of time or a ridculous amount of
storage is necessary to reproduce the results, as far as we know. Google/UCSB’s
result is the first demonstration of quantum computational supremacy, where a
quantum computer performs a task that is out-of-reach of the known abilities of
classical computers, without regard for whether the task is useful or not.

• Another example is called boson sampling. Bosons are a type of particle, and
examples include photons (particles of light) that mediate the electromagnetic
force, gluons that mediate the strong nuclear force, the W± and Z0 bosons that
mediate the weak force, and the Higgs boson that explains why particles have
mass. By passing photons through half-silvered mirrors and reflecting them off
mirrors, one gets a probability distribution for where the photons end up. This is
a quantum process that is theoretically easy for a quantum device to perform. On
the other hand, it is theoretically hard for a classical computer to compute. The
best known classical algorithm takes exponential time. This boson sampling
problem is in the complexity class #P (pronounced “sharp P”), and it is just as
unlikely to be equal to P as NP is to equal P. A proof that P and #P are not equal,
however, does not exist, just like a proof that P and NP are not equal does not
exist. In 2020 and 2021, a series of experiments from the University of Science
and Technology of China demonstrated boson sampling using photons. This is
another example of quantum computational supremacy.

In each of the above examples, quantum computers are superpolynomially faster
than the best known classical algorithms. This suggests that quantum computers can
efficiently solve problems that are intractable for classical computers or (probabilis-
tic) Turing machines, and so quantum computers may overturn the Strong Church-
Turing Thesis. These are not proofs, however, because the difficulty for classical
computers is not proven.

Despite this, there are other problems for which quantum computers do yield
provable speedups over classical computers, but these speedups are polynomial at
best. For example, quantum computers can search an unordered database in the
square root of the amount of time a classical computer would take. These provable
speedups do not violate the Strong Church-Turing Thesis since the thesis allows for
polynomial overhead.

The complexity class of problems efficiently solved by a quantum computer is
called BQP. It stands for Bounded-Error Quantum Polynomial-Time, and its sus-
pected relationship to P, NP, NP-COMPLETE, and PSPACE is depicted in Fig. 1.2.

As we will see in this book, quantum computers can efficiently simulate classical
computers, so they can efficiently solve everything that a classical computer can
efficiently solve, which is precisely P, so P is definitely contained within in BQP.
The question is how much bigger BQP is than P, if at all. A proof of this may be
distant, however, as whether NP and PSPACE are bigger than P is still unsolved.

Exercise 1.60. The halting problem is to determine whether a computer program halts (finishes
running) or runs forever (like an infinite loop). Turing proved in 1936 that an algorithm to solve
this in general does not exist. For this problem, let us go through a sketch of a modern proof.
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PSPACE

NP

NP-
complete

P

BQP

Fig. 1.2: The generally accepted relationships between the complexity classes BQP,
NP, NP-COMPLETE, P, and PSPACE.

Say there exists a program H(P) that returns true if the program P halts and false otherwise. We
will be proving that such a program cannot exist. In pseudocode, we can write H(P) as

program H(P):
if P halts
return true

else:
return false

end

Next, if H(P) exists, we can write a program Z(P) that does the opposite. Z(P) takes a program P

and runs/loops forever if H(P) returns true, and it halts if H(P) returns false. In pseudocode,

program Z(P):
if H(P) is true:
run forever

else:
halt

end

(a) Say H says that some program P1 halts, i.e., H(P1) returns true. Does Z(P1) halt or run forever?
(b) Say H says that some program P2 runs forever, i.e., H(P2) returns false. Does Z(P2) halt or

run forever?
Now consider what happens if we run Z(Z), i.e., program Z with its own code as input.

(c) If H(Z) returns true, does Z(Z) halt or run forever? Where is the contradiction?
(d) If H(Z) returns false, does Z(Z) halt or run forever? Where is the contradiction?

These contradictions mean that H(P) cannot exist.

Exercise 1.61. Watch “The Halting Problem - An Impossible Problem to Solve” by Up and Atom
on YouTube:
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https://www.youtube.com/watch?v=t37GQgUPa6k

Answer the following questions and fill in the blanks.
(a) David Hilbert asked three questions...

Is mathematics ?
Is mathematics ?
Is mathematics ?

(b) Some more complicated programs can even have other as inputs, and
some can even have as inputs.

(c) What is the Goldbach conjecture?
(d) If Hal says that Randy halts, what does Barrie do?
(e) If Hal says that Randy runs forever, what does Barrie do?
(f) If Hal says that Barrie halts, what does Barrie do? Is this a problem?
(g) If Hal says that Barrie runs forever, what does Barrie do? Is this a problem?
(h) In the same paper Turing also managed to answer Hilbert’s third question, that no, mathemat-

ics is . There are some problems that we simply
.

Exercise 1.62. Visit the Wikipedia list of undecidable problems at

https://en.wikipedia.org/wiki/List_of_undecidable_problems

Describe three undecidable problems.

Exercise 1.63. Take a look at Google/UCSB’s paper on quantum computational supremacy at

https://doi.org/10.1038/s41586-019-1666-5

From the abstract, fill in the blanks.
(a) “Our Sycamore processor takes about 200 seconds to sample one instance of a quantum circuit

.”
(b) “This dramatic increase in speed compared to

classical algorithms is an experimental realization of [computational]
.”

Exercise 1.64. Read the following excerpts from Scott Aaronson’s article “The Limits of Quantum
Computers” in Scientific American (March 2008):

(a) Page 65, box titled “The Good News.” What would be the “killer app” for quantum comput-
ers?

(b) Page 66, box titled “What Classical Computers Can and Cannot Do.” Fill in the blank: “NP-
complete problems are the of the NP problems.”

(c) Page 67, box titled “Where Quantum Computers Fit In.” Are quantum computers expected to
solve some, most, or all problems in NP?

1.9 Summary

The smallest unit of classical information is the bit, which has two possible states, 0
or 1. Bits can be used to encode information, such as using ASCII. Bits are operated
on by logic gates, including NOT, AND, OR, XOR, NAND, and NOR. Together,
these gates can be used to perform any computation, and subsets of these gates are
also universal, such as {NOT, AND, OR} and {NAND}. The mathematics that de-
scribes logic gates is called boolean algebra. Logic gates can be made reversible, and

https://www.youtube.com/watch?v=t37GQgUPa6k
https://en.wikipedia.org/wiki/List_of_undecidable_problems
https://doi.org/10.1038/s41586-019-1666-5
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the Toffoli gate is a reversible version of the AND gate. In physical systems, errors
sometimes occur, but as long as the error rates are sufficiently low, they can be cor-
rected. Classical computers can efficiently solve some problems, while other prob-
lems take a superpolynomial amount of time. It is believed that quantum computers
can efficiently solve some of the problems that are hard for classical computers.



Chapter 2
One Quantum Bit

By drawing parallels to classical computing from the previous chapter, we can in-
troduce quantum information and computation in a natural way. Since we have not
yet defined “quantum,” just take it to mean a different set of rules, which we will
bring up as they become relevant.

2.1 Qubit Touchdown: A Quantum Computing Board Game

Quantum physics has a reputation for being difficult and confusing, exacerbated by
(incorrect) references to quantum mechanics in movies to justify their sci-fi plot ele-
ments. To help reduce this intimidation factor and ease the introduction of quantum
computing, I made a board game called Qubit Touchdown. It is shown in Fig. 2.1,
and it is available print-on-demand from The Game Crafter.1

Qubit Touchdown is a two player game. It consists of a game board, shown in
Fig. 2.2a, an orange football token, a die with only zeros and ones on it, and fifty-
two action cards, shown in Fig. 2.2b. To start the game, one player “kicks off” by
rolling the binary die, and the football token starts at zero or one, depending on
the outcome of the roll. Beginning with the other player, players take turns playing
action cards, which move the football according to the lines and arrows on the game
board. For example, at position 0, H moves the ball to position +;

√
X moves the

ball to −i; X and Y move the ball to 1; and Z, I, and S keep the ball at position 0.
For the measurement card, if the football is at 0 or 1, nothing happens. Otherwise,
one kicks off again by rolling the binary die. When a player scores a touchdown by
moving the ball into their opponent’s endzone, they roll the die to kick off again,
and play continues with the other player. Whoever scores the most touchdowns, by
the time all the action cards have been used, wins.

All of these game mechanics come from quantum computing.

1 https://www.thegamecrafter.com/games/qubit-touchdown
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Fig. 2.1: The complete Qubit Touchdown board game.

It is not necessary to play Qubit Touchdown in order to continue with this text-
book.

Exercise 2.1. In Qubit Touchdown, say the ball is at position 0. Where would it move if you played
(a) X , (b) Y , (c) Z, (d) H, (e) S, (f)

√
X , (g) I, (h) measurement?

Exercise 2.2. In Qubit Touchdown, say the ball is at position i. Where would it move if you played
(a) X , (b) Y , (c) Z, (d) H, (e) S, (f)

√
X , (g) I, (h) measurement?

2.2 Superposition

2.2.1 Zero or One

A quantum bit, or qubit, is both similar to and different from a classical bit in some
important ways. First, like a classical bit, a qubit can take two values, 0 or 1. Using
bra-ket notation or Dirac notation from quantum physics, we write 0 and 1 enclosed
between a vertical bar and an angle bracket called a ket:

|0⟩, |1⟩.

Although it may seem strange to write a quantum 0 and a quantum 1 like this, it will
be very useful later.

We can visualize these distinct states, |0⟩ and |1⟩, as the north and south poles of
a sphere of radius 1 called the Bloch sphere:
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(a) (b)

Fig. 2.2: The Qubit Touchdown (a) game board and (b) action cards.
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x

y

z

|0〉

|1〉

Following the standard physics convention, the x-axis comes out of the page, the
y-axis points to the side, and z-axis is oriented up. Then, since the Bloch sphere
has radius 1, |0⟩ corresponds to the (x,y,z) point (0,0,1), and |1⟩ corresponds to
(0,0,−1).

2.2.2 Superposition

If we had a classical bit, |0⟩ and |1⟩ would be the only two states. But, the laws of
quantum mechanics allow the state of a qubit to be a combination of |0⟩ and |1⟩,
called a superposition of |0⟩ and |1⟩. For example, here is a state that is equal parts
|0⟩ and |1⟩:

1√
2
(|0⟩+ |1⟩) .

In this state, the coefficient of |0⟩ is 1/
√

2, and the coefficient of |1⟩ is also 1/
√

2.
So, it is equal parts |0⟩ and |1⟩. Given this, it should be on the equator of the Bloch
sphere, which is halfway between the north and south poles:

x

y

z

This state is at the (x,y,z) point (1,0,0), where the Bloch sphere intersects the x-
axis. Later, we will learn how to calculate these coordinates, but for now, we will
focus on building geometric intuition.
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There are many other states on the equator of the Bloch sphere, all of which are
equal parts |0⟩ and |1⟩. We can reach them by changing the relative phase of |0⟩ and
|1⟩. For example, if we instead use a negative sign, we get

x

y

z

1√
2
(|0〉 − |1〉)

This state is at the point (−1,0,0), on the −x-axis. To reach the y-axis at (0,1,0),
we instead use a phase of i =

√
−1:

x

y

z

1√
2
(|0〉+ i|1〉)

We see that imaginary and complex numbers are used in quantum computing. In
case it has been a while since you have used them, in the next section, we will
review complex numbers in detail. Continuing, to reach the −y-axis at (0,−1,0),
we use a phase of −i:

x

y

z

1√
2
(|0〉 − i|1〉)
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These states appear frequently enough that they have names: “plus,” “minus,” “i,”
and “minus i”:

|+⟩= 1√
2
(|0⟩+ |1⟩) ,

|−⟩= 1√
2
(|0⟩− |1⟩) ,

|i⟩= 1√
2
(|0⟩+ i|1⟩) ,

|−i⟩= 1√
2
(|0⟩− i|1⟩) .

(2.1)

Drawing them together with |0⟩ and |1⟩ on the Bloch sphere, we get the following,
which also appears on the back of every action card in Qubit Touchdown:

x

y

z

|0〉

|1〉

|+〉

|−〉
|i〉

|−i〉

In Qubit Touchdown, these six states correspond to the six positions on the game
board in Fig. 2.2a. The football token corresponds to a qubit, so the ball moving
around the game board corresponds to a qubit changing between these states (more
on this later).

Of course, there are many other points on the equator of the Bloch sphere. We
can reach them using other complex phases, such as
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x

y

z

1√
2

(
|0〉+ eiπ/6|1〉

)

Superpositions are not restricted to the equator, either. They can favor |0⟩ or |1⟩ by
being in the northern or southern hemisphere, such as

x

y

z

√
3

2
|0〉+ 1

2
|1〉

x

y

z

2

3
|0〉+ 1− 2i

3
|1〉

In fact,

A qubit can be any point on the Bloch sphere.

Again, we will later see how to calculate where a quantum state is on the Bloch
sphere. Before we do that, however, we need to review complex numbers and discuss
measuring qubits.

Exercise 2.3. Draw a Bloch sphere and label the following locations:
(a) Where a qubit is exactly |0⟩.
(b) Where a qubit is exactly |1⟩.
(c) Where a qubit is half |0⟩ and half |1⟩.
(d) Where a qubit is more |0⟩ than |1⟩.
(e) Where a qubit is more |1⟩ than |0⟩.
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2.2.3 Review of Complex Numbers

A complex number z is a number with a real part x plus i times an imaginary part y:

z = x+ iy.

For example, 1+ i
√

3 is a complex number. The parts are called components. We
denote the real component of z as ℜ(z), and it just equals x:

ℜ(z) = x.

Similarly, we denote the imaginary component as ℑ(z), and it just equals y:

ℑ(z) = y.

For example, ℜ(1+ i
√

3) = 1 and ℑ(1+ i
√

3) =
√

3. Real numbers are complex
numbers; their imaginary parts are just zero. Similarly, imaginary numbers are com-
plex numbers; their real parts are just zero.

The above form x+ iy is called the Cartesian form or rectangular form of a com-
plex number. In quantum computing, it is often useful to write a complex number
as its length r times its complex phase eiθ :

z = reiθ .

This is called the polar form of a complex number, and any complex number can be
written this way. To convert from the Cartesian form x+ iy to the polar form reiθ ,
we use the following equations, which we will prove in a moment:

r =
√

x2 + y2, (2.2)

θ = tan−1
(y

x

)
. (2.3)

To convert from the polar form reiθ to the Cartesian form x+ iy, we use the following
equations, which we will also prove in a moment:

x = r cosθ (2.4)
y = r sinθ . (2.5)

These relationships can be proved a couple different ways:

• Geometrically, complex number is a point on the complex plane, which has the
real component as its x-axis and the imaginary component as its y-axis:
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Re

Im
x+ iy

x

yr

θ

Its length is r, and the angle it makes counter-clockwise from the real axis is
θ . Since x and y are the legs of a right triangle, and r is the hypotenuse, the
Pythagorean theorem says that x2 + y2 = r2. Taking the square root of each
side, we get r =

√
x2 + y2, which proves Eq. (2.2).

Next, from the drawing, θ is an angle in a right triangle, and y is opposite of
θ , x is adjacent, and r is the hypotenuse. We can relate these quantities using
the trigonometric functions sine, cosine, and tangent.2 First, using sine, we get
sinθ = y/r. Multiplying both sides by r, we get y = r sinθ , which is Eq. (2.5).
Next using cosine, we get cosθ = x/r. Multiplying both sides by r, we get
x= r cosθ , which is Eq. (2.4). Finally, using tangent, we get tanθ = y/x. Taking
the inverse tangent of both sides, we get θ = tan−1(y/x), which is Eq. (2.3).

• Algebraically, we can write a complex phase in Cartesian form using Euler’s
formula, which says says that

eiθ = cosθ + isinθ . (2.6)

If you have taken more advanced math than is required for this textbook, you
may be familiar with Euler’s formula and its proof. (It is typically seen during
the second semester of calculus.) If not, no worries. You do not need to know
where it comes from. It is simple enough to memorize now, which you should
do, since it will show up again.
Now using Euler’s formula, we can write the polar form of a complex number
as

z = reiθ = r (cosθ + isinθ) = r cosθ︸ ︷︷ ︸
x

+i r sinθ︸ ︷︷ ︸
y

.

Thus, the real part of z is x = r cosθ , which is Eq. (2.4), and the imaginary part
is y = r sinθ , which is Eq. (2.5). If we take the sum of the squares of these
components, we get

x2 + y2 = r2 cos2
θ + r2 sin2

θ = r2 (cos2
θ + sin2

θ)︸ ︷︷ ︸
1

= r2.

2 Many people remember the trigonometric functions using the mnemonic SOH-CAH-TOA, where
sine is opposite over hypotenuse (SOH), cosine is adjacent over hypotenuse (CAH), and tangent is
opposite over adjacent (TOA).
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In the last equality, we used the Pythagorean identity sin2
θ + cos2 θ = 1 from

trigonometry. Taking the square root of both sides, we get r =
√

x2 + y2, which
proves Eq. (2.2). Next, if we divide y = r sinθ by x = r cosθ , we get

y
x
=

sinθ

cosθ
= tanθ .

Taking the inverse tangent of both sides, we get Eq. (2.3).

For example, say we have a complex number in Cartesian form, z= 1+ i
√

3. To con-

vert this to polar form, we calculate its length r =
√

12 +
√

3
2
=
√

1+3 =
√

4 = 2
and angle θ = tan−1(

√
3/1) = π/3 radians or 60◦. The convention is to use radians,

so putting these together, the polar form is z = 2eiπ/3.
There are a few more aspects of complex numbers that come up frequently in

quantum computing, so let us review them now:

• The complex conjugate (or just conjugate) of a complex number is the complex
number obtained by negating its imaginary part. That is, we replace i with −i.
We denote the complex conjugate of z as z∗, so if z = x+ iy = reiθ , then

z∗ = x− iy = re−iθ .

From the previous example,
(
1+ i
√

3
)∗

= 1− i
√

3 and
(
2eiπ/3

)∗
= 2e−iπ/3.

• The norm of a complex number z, which we denote |z|, is simply its length r:

|z|= r.

Then from the previous example, |1+ i
√

3|= 2, since its length r is 2.
• The norm-square of a complex number z, which we denote |z|2, is simply the

square of its norm, so it is r2:
|z|2 = r2.

From the previous example, |1+ i
√

3|2 = 4. One way to calculate the norm-
square is multiplying a complex number by its conjugate:

|z|2 = z∗z = zz∗. (2.7)

We can prove that this works using either the Cartesian or polar form. In Carte-
sian form,

zz∗ = (x+ iy)(x− iy) = x2− ixy+ ixy− i2y2 = x2 + y2 = r2 = |z|2,

where in the third step, we used i2 =
√
−12

=−1. In polar form,

zz∗ = reiθ re−iθ = r2eiθ−iθ = r2e0 = r2 = |z|2.

Finally, Eq. (2.7) gives us another way to find the norm of z, by taking the square
root of z times its conjugate z∗:
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|z|=
√
|z|2 =

√
z∗z =

√
zz∗.

Exercise 2.4. Consider the complex number z = 1+2i.
(a) Find ℜ(z).
(b) Find ℑ(z).
(c) Plot z as a point in the complex plane.
(d) Write z in polar form reiθ .
(e) Find z∗.
(f) Find |z|.
(g) Find |z|2.

Exercise 2.5. Consider the complex number z =−3− i.
(a) Find ℜ(z).
(b) Find ℑ(z).
(c) Plot z as a point in the complex plane.
(d) Write z in polar form reiθ . Hint: The angle should be between π and 3π/2 (i.e., 180◦ and

270◦).
(e) Find z∗.
(f) Find |z|.
(g) Find |z|2.

2.3 Measurement

2.3.1 Measurement in the Z-Basis

In a previous section, we had the following qubit, which was on the equator of the
Bloch sphere:

x

y

z

1√
2

(
|0〉+ eiπ/6|1〉

)

Although the laws of quantum mechanics permit this superposition of |0⟩ and |1⟩,
it also demands that if we measure the qubit, such as at the end of a computation
in order to read the result, we get a single, definite value. That is, we get |0⟩ or
|1⟩, each with some probability, not a superposition of |0⟩ and |1⟩. Geometrically,
this particular qubit lies on the equator, halfway between the north and south poles,
so if we measure it, we get |0⟩ with probability 1/2 or |1⟩ with probability 1/2. To
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calculate these probabilities, we take the norm-square of the coefficient of |0⟩ or |1⟩.
That is, the probability of getting |0⟩ is∣∣∣∣ 1√

2

∣∣∣∣2 = 1
2
,

and the probability of getting |1⟩ is∣∣∣∣∣eiπ/6
√

2

∣∣∣∣∣
2

=
eiπ/6
√

2
e−iπ/6
√

2
=

e0

2
=

1
2
.

The coefficients are called amplitudes, so:

The probability is given by the norm-square of the amplitude.

Let us look at another example, which we also saw earlier:

x

y

z

2

3
|0〉+ 1− 2i

3
|1〉

Geometrically, since the qubit is closer to the south pole, we expect that the prob-
ability of getting |1⟩ is greater than the probability of getting |0⟩. To get the exact
probabilities, we calculate the norm-square of each amplitude:∣∣∣∣23

∣∣∣∣2 = 4
9
,

and ∣∣∣∣1−2i
3

∣∣∣∣2 = 1−2i
3

1+2i
3

=
1+2i−2i−4i2

9
=

5
9
.

So, if we measure the qubit, the probability of getting |0⟩ is 4/9, and the probability
of getting |1⟩ is 5/9. As expected, the probability of getting |1⟩ is greater than the
probability of getting |0⟩, and also note that the total probability is 4/9+ 5/9 = 1,
as it must.

Exercise 2.6. A qubit is in the state
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1+ i
√

3
3
|0⟩+ 2− i

3
|1⟩.

If you measure the qubit, what is the probability of getting
(a) |0⟩?
(b) |1⟩?

Say a qubit is superposition of |0⟩ and |1⟩. Say we measure it, and the outcome
is |0⟩. Now for something new: The qubit is no longer in a superposition of |0⟩ and
|1⟩. It is now simply |0⟩, and we know because we measured it. Measuring the qubit
changed it. It forced it to take a stand. We say the state has collapsed to |0⟩. If we
measure the qubit again, we get |0⟩ with probability 1. This aspect of measurement
is important enough to box:

Measurement collapses the qubit.

In Qubit Touchdown, playing the measurement action card, or kicking off after a
touchdown, corresponds to measuring the qubit. For the measurement action card,
if the ball is at position 0 or 1, then nothing happens, just like measuring a qubit in
state |0⟩ or |1⟩ returns the same state with probability 1. If the ball is at position i or
−i, then the binary die is rolled, and the ball is moved to 0 or 1 with 50% probability
each, just like measuring a qubit in the |i⟩ or |−i⟩ states collapses the state to |0⟩ or
|1⟩ with 50% probability. Finally, after scoring a touchdown, the ball is either at the
+ or − positions in the endzones. Then, the binary die is rolled, moving the ball
to 0 or 1 with 50% probability each. In the same way, when a qubit is in the |+⟩
or |−⟩ state, measuring it yields |0⟩ or |1⟩ with 50% probability each, and the state
collapses to whichever state was measured.

Exercise 2.7. A qubit is in the state

2
3
|0⟩+ 1+2i

3
|1⟩.

Say you measure the qubit and get |0⟩. If you measure the qubit a second time, what is the proba-
bility of getting

(a) |0⟩?
(b) |1⟩?

2.3.2 Normalization

We say a quantum state is normalized if its total probability is 1, as it should be.
Sometimes, we must find an overall normalization constant to make this true. For
example, a qubit is in the state

A
(√

2|0⟩+ i|1⟩
)
.
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We normalize this state by finding the normalization constant A that ensures that the
total probability is 1. So,

1 = (A
√

2)(A
√

2)∗+(Ai)(Ai)∗

= 2|A|2 + |A|2

= 3|A|2

|A|2 = 1
3
.

As we will prove later, the overall phase does not matter, so we might as well pick
A to be real. Thus,

A =
1√
3
,

and the normalized state is

1√
3

(√
2|0⟩+ i|1⟩

)
.

Exercise 2.8. A qubit is in the state
eiπ/8
√

5
|0⟩+β |1⟩.

What is a possible value of β?

Exercise 2.9. A qubit is in the state

A
(

2eiπ/6|0⟩−3|1⟩
)
.

(a) Normalize the state (i.e., find A).
(b) If you measure the qubit, what is the probability that you get |0⟩?
(c) If you measure the qubit, what is the probability that you get |1⟩?

2.3.3 Measurement in Other Bases

Even though we introduced |0⟩ and |1⟩ as the north and south poles, respectively, of
the Bloch sphere, the Bloch sphere is not a planet, and it is not spinning. Then, any
two opposite points could be taken as the north and south poles. For example, |+⟩
and |−⟩ could be the north and south poles, or |i⟩ and |−i⟩, or any opposite points.
A set of distinct measurement outcomes is called a basis, and {|0⟩, |1⟩} is called the
Z-basis because they lie on the z-axis of the Bloch sphere. Similarly, {|+⟩, |−⟩} is
called the X-basis because they lie on the x-axis of the Bloch sphere, and {|i⟩, |−i⟩}
is called the Y -basis because they lie on the y-axis of the Bloch sphere. We can
measure with respect to any of these bases, or with respect to any two states on
opposite sides of the Bloch sphere.

For example, consider a qubit in the state
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√

3
2
|0⟩+ 1

2
|1⟩,

which appears on the Bloch sphere at an angle of 30◦ above the x-axis, as shown
below:

x

y

z

|0⟩

|1⟩

|+⟩

|−⟩
|i⟩

|−i⟩ •

√
3

2
|0⟩+ 1

2
|1⟩

Let us measure this with respect to four different bases: the Z-basis {|0⟩, |1⟩}, the
X-basis {|+⟩, |−⟩}, the Y -basis {|i⟩, |−i⟩}, and a fourth basis (below).

1. If we measure the qubit in the Z-basis {|0⟩, |1⟩}, then we get |0⟩with probability
3/4 or |1⟩ with probability 1/4.

2. What if we measure in the X-basis {|+⟩, |−⟩} instead? Geometrically, the prob-
ability of getting |+⟩ should be much higher than the probability of getting |−⟩
because the state is so much closer to |+⟩ on the Bloch sphere. To calculate the
probabilities precisely, we need to express the state in terms of |+⟩ and |−⟩ so
that we can identify the amplitudes and then find their norm-squares. From the
definitions of |+⟩ and |−⟩ in Eq. (2.1), we have

|0⟩= 1√
2
(|+⟩+ |−⟩) , |1⟩= 1√

2
(|+⟩− |−⟩) .

Substituting into the state of our qubit,
√

3
2
|0⟩+ 1

2
|1⟩=

√
3

2
1√
2
(|+⟩+ |−⟩)+ 1

2
1√
2
(|+⟩− |−⟩)

=

√
3+1

2
√

2
|+⟩+

√
3−1

2
√

2
|−⟩.

Now the amplitudes are easy to identify, and we can find the probabilities by
taking their norm-squares. The probability of measuring |+⟩ is∣∣∣∣∣

√
3+1

2
√

2

∣∣∣∣∣
2

=

√
3+2
4

≈ 0.93,

and the probability of measuring |−⟩ is
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√

3−1
2
√

2

∣∣∣∣∣
2

=
−
√

3+2
4

≈ 0.07.

This is consistent with the Bloch sphere, since the state is much closer to |+⟩
than it is to |−⟩.

3. Now what if we measure in the {|i⟩, |−i⟩} basis? Geometrically, the Bloch
sphere reveals that the state is halfway between |i⟩ and |−i⟩, so we get one
or the other with probability 1/2 each. We can also calculate this by rewrit-
ing the state in terms of |i⟩ and |−i⟩ and then finding the norm-square of the
amplitudes. From the definitions of |i⟩ and |−i⟩ in Eq. (2.1),

|0⟩= 1√
2
(|i⟩+ |−i⟩) , |1⟩= −i√

2
(|i⟩− |−i⟩) .

Substituting,
√

3
2
|0⟩+ 1

2
|1⟩=

√
3

2
1√
2
(|i⟩+ |−i⟩)+ 1

2
−i√

2
(|i⟩− |−i⟩)

=

√
3− i

2
√

2
|i⟩+

√
3+ i

2
√

2
|−i⟩.

So, the probability of getting |i⟩ is∣∣∣∣∣
√

3− i
2
√

2

∣∣∣∣∣
2

=
3+1

8
=

1
2
,

and the probability of getting |−i⟩ is∣∣∣∣∣
√

3+ i
2
√

2

∣∣∣∣∣
2

=
3+1

8
=

1
2
,

as expected.
4. Consider the following two states, which we will call |a⟩ and |b⟩:

|a⟩=
√

3
2
|0⟩+ i

2
|1⟩,

|b⟩= i
2
|0⟩+

√
3

2
|1⟩.

Here they are on the Bloch sphere:
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x

y

z

•

√
3

2
|0⟩+ 1

2
|1⟩

√
3

2
|0⟩+ i

2
|1⟩

i

2
|0⟩+

√
3

2
|1⟩

|a⟩ is located 30◦ above the y-axis, and |b⟩ is located 30◦ below the −y-axis.
(You will prove this in Exercise 2.16.) Since they are located on opposite points
of the Bloch sphere, they are a basis. Let us measure in this {|a⟩, |b⟩} basis.
Geometrically, the qubit is closer to |a⟩, so we expect a higher probability of
getting |a⟩ than |b⟩. To calculate the precise numbers, we first write |0⟩ and |1⟩
in terms of |a⟩ and |b⟩:

|0⟩=
√

3
2
|a⟩− i

2
|b⟩, |1⟩= −i

2
|a⟩+

√
3

2
|b⟩.

Substituting, the state of our qubit is

√
3

2
|0⟩+ 1

2
|1⟩=

√
3

2

(√
3

2
|a⟩− i

2
|b⟩
)
+

1
2

(
−i
2
|a⟩+

√
3

2
|b⟩
)

=
3− i

4
|a⟩+

√
3(1− i)

4
|b⟩.

Taking the norm-square of each amplitude, the probability of getting |a⟩ is∣∣∣∣3− i
4

∣∣∣∣2 = 9+1
16

=
5
8
,

and the probability of getting |b⟩ is∣∣∣∣∣
√

3(1− i)
4

∣∣∣∣∣
2

=
3
8
.

Later, when we describe qubits in the mathematics of linear algebra, we will see
another way to convert between bases.

Exercise 2.10. A qubit is in the state

1
2
|0⟩−

√
3

2
|1⟩.
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(a) If you measure it in the Z-basis {|0⟩, |1⟩}, what states can you get and with what probabilities?
(b) Write the qubit’s state in terms of |+⟩ and |−⟩.
(c) If you measure it in the basis {|+⟩, |−⟩}, what states can you get and with what probabilities?

Exercise 2.11. The following two states are opposite points on the Bloch sphere:

|a⟩=
√

3
2
|0⟩+ i

2
|1⟩,

|b⟩= i
2
|0⟩+

√
3

2
|1⟩.

So, we can measure relative to them. Now consider a qubit in the state

1
2
|0⟩−

√
3

2
|1⟩.

(a) Write the qubit’s state in terms of |a⟩ and |b⟩.
(b) If you measure the qubit in the basis {|a⟩, |b⟩}, what states can you get and with what proba-

bilities?

2.3.4 Consecutive Measurements

We have already seen that measuring a qubit collapses the state to whatever was
measured. This can lead to interesting statistics, even more so if we change the
measurement basis. For example, consider the following three measurements:

1. Say we first measure the qubit in the Z-basis {|0⟩, |1⟩}. Then, the qubit collapses
to |0⟩ or |1⟩.

2. Next, if we measure in the X-basis {|+⟩, |−⟩}, then since both |0⟩ and |1⟩ are
halfway between |+⟩ and |−⟩, the qubit collapses to |+⟩ or |−⟩, each with
probability 1/2.

3. If we then measure in the Z-basis {|0⟩, |1⟩}, then since |+⟩ and |−⟩ are halfway
between |0⟩ and |1⟩, the probability of each is 1/2. We can continue alternating
between these two measurement bases, each time having a 50:50 chance of
getting each outcome.

Exercise 2.12. A qubit is in the state |0⟩. If you measure it in the X-basis {|+⟩, |−⟩} and then
measure it again in the Z-basis {|0⟩, |1⟩}, what is the probability of getting

(a) |0⟩?
(b) |1⟩?

2.4 Bloch Sphere Mapping

We know that a qubit can be visualized as a point on the Bloch sphere. Now, let us
explain how to determine where the point should be.
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2.4.1 Global and Relative Phases

Say the qubit from the last section is multiplied by an overall, global phase:

eiθ

(√
3

2
|0⟩+ 1

2
|1⟩
)
,

for some angle θ . If we measure this in the Z-basis, {|0⟩, |1⟩} the probability of
getting |0⟩ is ∣∣∣∣∣eiθ

√
3

2

∣∣∣∣∣
2

=
3
4
,

and the probability of getting |1⟩ is∣∣∣∣eiθ 1
2

∣∣∣∣2 = 1
4
,

as they were without the global phase. So, the phase does not change anything.
If we instead measure in the X-basis {|+⟩, |−⟩}, then we can rewrite the state as

eiθ

(√
3+1

2
√

2
|+⟩+

√
3−1

2
√

2
|−⟩
)
.

Then, the probability of getting |+⟩ is∣∣∣∣∣eiθ
√

3+1
2
√

2

∣∣∣∣∣
2

=

√
3+2
4

≈ 0.93,

and the probability of measuring |−⟩ is∣∣∣∣∣eiθ
√

3−1
2
√

2

∣∣∣∣∣
2

=
−
√

3+2
4

≈ 0.07,

as they were before without the global phase. So again, the phase does not change
anything.

This is true no matter what measurement basis we use, and it leads to the follow-
ing result:

Global phases are physically irrelevant.

As such, global phases can be dropped/ignored. States that differ by a global phase
are actually the same state; they correspond to the same point on the Bloch sphere.

Note that a relative phase is physically significant, such as



92 2 One Quantum Bit

|+⟩= 1√
2
(|0⟩+ |1⟩)

vs
|i⟩= 1√

2
(|0⟩+ i|1⟩) = 1√

2

(
|0⟩+ eiπ/2|1⟩

)
.

These correspond to different points on the Bloch sphere, and they can be distin-
guished by measurements in appropriate bases. Although measuring |+⟩ and |i⟩ in
the Z-basis yields the same statistics, i.e., |0⟩ with probability 1/2 or |1⟩ with prob-
ability 1/2, measuring in the X-basis {|+⟩, |−⟩}yields different results. Measuring
|+⟩ in the X-basis always yields |+⟩, but measuring |i⟩ in the X-basis yields |+⟩ or
|−⟩ with a 50:50 probability.

Exercise 2.13. Is there a measurement that can distinguish the following pairs of states? If yes,
give a measurement. If no, explain your reasoning.

(a) |+⟩= 1√
2
(|0⟩+ |1⟩) and eiπ/8|+⟩= eiπ/8

√
2

(|0⟩+ |1⟩).

(b) |+⟩= 1√
2
(|0⟩+ |1⟩) and |−⟩= 1√

2
(|0⟩− |1⟩).

(c) |0⟩ and eiπ/4|0⟩.

2.4.2 Spherical Coordinates

A generic quantum state is typically called ψ (the Greek letter “psi,” which is pro-
nounced “sigh”), and since it is quantum, we write it as a ket |ψ⟩. Now say we have
a generic qubit |ψ⟩ with some amplitudes α and β :

|ψ⟩= α|0⟩+β |1⟩,

where |α|2 + |β |2 = 1 for normalization. Since the global phase does not matter, we
can assume that α is real and positive, and β may be complex. To determine the
location of this qubit on the Bloch sphere, we first parameterize, or write in terms
of other parameters, α and β in terms of two angles θ and φ :

α = cos
(

θ

2

)
, β = eiφ sin

(
θ

2

)
.

With 0 ≤ θ ≤ π and 0 ≤ φ < 2π , this captures all the properties we need: α is
real and positive, β is complex, and the state is normalized. Substituting, we have
rewritten the qubit’s state as

|ψ⟩= cos
(

θ

2

)
|0⟩+ eiφ sin

(
θ

2

)
|1⟩. (2.8)

Let us work through an example. Say a qubit is in the state
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3+ i
√

3
4
|0⟩− 1

2
|1⟩.

We see that the amplitude of |0⟩ is complex, but in Eq. (2.8), it needs to be real. To
make it real, we first convert it to polar form. Since (3+ i

√
3)/4 = (

√
3/2)eiπ/6, the

state is √
3

2
eiπ/6|0⟩− 1

2
|1⟩.

Factoring, this becomes

eiπ/6

(√
3

2
|0⟩− e−iπ/6 1

2
|1⟩
)
≡
√

3
2
|0⟩− e−iπ/6 1

2
|1⟩,

where ≡ denotes “equivalent to,” and the states are equivalent because the global
phase does not matter and can be dropped. Comparing this to the Bloch sphere
parameterization in Eq. (2.8), we still need to change the minus sign to a plus sign.
We can do this using eiπ =−1. Then, the state is

√
3

2
|0⟩+ eiπ e−iπ/6 1

2
|1⟩=

√
3

2
|0⟩+ ei5π/6 1

2
|1⟩.

Now it takes the form of Eq. (2.8), and we identify

cos
(

θ

2

)
=

√
3

2
, eiφ = ei5π/6, sin

(
θ

2

)
=

1
2
.

Solving the first or last equation for θ using the inverse cosine or inverse sine, and
solving the second equation for φ , we get

θ =
π

3
, φ =

5π

6
.

Thus, plugging into Eq. (2.8), the state of the qubit is equivalent to

cos
(

π/3
2

)
|0⟩+ ei5π/6 sin

(
π/3

2

)
|1⟩.

Next, to map this qubit to a location on the Bloch sphere, we identify θ and φ as
the following angles:



94 2 One Quantum Bit

x

y

z

θ

φ

So, θ measures the angle down from the north pole, called the polar angle, and
φ measures the angle across from the x-axis in the xy plane, called the azimuthal
angle. If you have taken more advanced mathematics than is required for this book,
these are precisely spherical coordinates with a radius of 1. Spherical coordinates
are typically covered in the third semester of calculus, but everything you need for
this textbook will be explained here.

Returning to our example, we had θ = π/3 and φ = 5π/6, so the state is located
on the Bloch sphere at an angle of π/3 or 60◦ from the north pole, and 5π/6 or 150◦

rotated to the side:

x

y

z

3 + i
√
3

4
|0〉 − 1

2
|1〉

Exercise 2.14. A qubit is in the state

|i⟩= 1√
2
(|0⟩+ i|1⟩) .

(a) Where on the Bloch sphere is this state? Give your answer in (θ ,φ) coordinates.
(b) Sketch the point on the Bloch sphere.

Exercise 2.15. A qubit is in the state

1− i
2
√

2
|0⟩+

√
3

2
|1⟩.

(a) Where on the Bloch sphere is this state? Give your answer in (θ ,φ) coordinates.
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(b) Sketch the point on the Bloch sphere.

Exercise 2.16. Consider the following two states from Exercise 2.11:

|a⟩=
√

3
2
|0⟩+ i

2
|1⟩,

|b⟩= i
2
|0⟩+

√
3

2
|1⟩.

Prove these are opposite points of the Bloch sphere by finding their points in spherical coordinates
(θa,φa) and (θb,φb). Verify that θb = π −θa and φb = φa +π , which means they lie on opposite
points of the Bloch sphere.

2.4.3 Cartesian Coordinates

We can also determine the (x,y,z) coordinates, called Cartesian coordinates, of a
point on the Bloch sphere. To see how to determine these from the spherical coordi-
nates (θ ,φ), let us first zoom in and focus on the polar angle θ :

x

y

z

θ

φ

zoom−−−→

x

y

z

sin θ

co
s
θ

1

θ

φ

In this picture, we drew a dashed line from the point to the z-axis, perpendicular to
it. This creates a right triangle, which we shaded gray. Since the radius of the Bloch
sphere is 1, the hypotenuse of the gray triangle is 1, which we labeled in the picture.
Then, since sinθ is opposite over hypotenuse, and the hypotenuse is 1, we get that
sinθ is the opposite side, which we labeled in the picture. Similarly, since cosθ is
adjacent over hypotenuse, and the hypotenuse is 1, we get that cosθ is the adjacent
side, which we also labeled in the picture. This adjacent side gives the z-coordinate
(height) of the point, i.e., z = cosθ .

To get the x and y coordinates, we look at the projection onto the xy-plane:
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x

y

z

1

sin θ

co
s
θ

sin θ

θ

φsin
θ c
os
φ

sin θ sinφ

First, we copied sinθ from the top dashed line to below, since they are opposite sides
of a rectangle. This is the hypotenuse of the bottom gray triangle. Then, since sinφ

is opposite over hypotenuse, we get that the opposite side is equal to the hypotenuse
times sinφ , or sinθ sinφ , which we labeled in the drawing. This corresponds to
the y-coordinate (distance to the right) of the point, i.e., y = sinθ sinφ . Similarly,
since cosφ is adjacent over hypotenuse, we get that the adjacent side is equal to
the hypotenuse times cosφ , or sinθ cosφ . This is labeled as the left side of the
gray triangle in the drawing, and it corresponds to the x-coordinate (distance out of
the page), i.e., x = sinθ cosφ . Combining these results with the z-coordinate, we
can convert from spherical coordinates to Cartesian coordinates using the following
formulas:

x = sinθ cosφ ,

y = sinθ sinφ ,

z = cosθ .

Continuing the previous example, we had θ = π/3 and φ = 5π/6, so the (x,y,z)
coordinates are of the qubit are

x = sin
(

π

3

)
cos
(

5π

6

)
=

√
3

2
· −
√

3
2

=−3
4
,

y = sin
(

π

3

)
sin
(

5π

6

)
=

√
3

2
· 1

2
=

√
3

4
,

z = cos
(

π

3

)
=

1
2
.

So, the qubit corresponds to point (−3/4,
√

3/4,1/2) on the Bloch sphere.

Exercise 2.17. In Cartesian (x,y,z), coordinates, where on the Bloch sphere is the state from
(a) Exercise 2.14?
(b) Exercise 2.15?
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2.5 Physical Qubits

Physically, any quantum system with two distinct states can be used as a qubit.
While one is not expected to be familiar with quantum physics, some examples
include:

• Photons, or quantum particles of light, have a property called polarization. A
photon’s polarization can be vertical or horizontal, or a superposition of both,
and we can use this as a qubit.

• Trapped ions. An ion is an atom that has an overall charge (instead of being
neutral) because it has gained or lost one or more electrons. Individual ions can
be trapped in space using electric fields. Two energy levels of an ion can be used
as a qubit.

• Cold atoms. Neutral atoms can be trapped at low temperatures using a magneto-
optical trap, which uses magnetic fields and lasers to cool and trap the atoms.
Another approach is using an optical lattice constructed by laser beams. Once
trapped, two energy levels of an atom can be used as a qubit.

• Nuclear magnetic resonance. The nuclei of atoms and molecules have a quan-
tum property called spin, which can be used as a qubit. Spins can be identified
by their frequency of precession when subject to a strong magnetic field.

• Quantum dots. An electron can be bound to a small semiconductor device, sim-
ilar to an electron bound to the nucleus of an atom. In these “artificial atoms,”
the spin of an electron, which can be “spin up” or “spin down,” can be used as
a qubit.

• Defect qubits. A diamond crystal may have a missing carbon atom, and if we
replace a carbon atom next to this vacancy with a nitrogen atom, we get a
“spin triplet” that can be used for quantum computing. This is called a nitrogen-
vacancy center in diamond.

• Superconductors. In a superconducting circuit, charge flows with zero resis-
tance. The magnetic flux across an inductor and the charge on a capacitor
cause a harmonic potential energy with equally spaced, discrete energy levels.
A Josephson junction is a thin insulating layer that is added, and it changes the
potential energy so that the energy levels become unequally spaced. Then, the
energy levels can be distinguished, and two of them can be used as a qubit.

Informationally, these systems contain the same amount of information: two distinct
quantum states. So we simply use |0⟩ and |1⟩ for the rest of the discussion.

Exercise 2.18. A review of various ways to build a quantum computer is the article “Quantum
Computers” by Ladd et al. (2010). The published version in Nature 464, 45–53 is available at
https://dx.doi.org/10.1038/nature08812, but it may require a subscription. Search
through the text and fill in the blanks:

(a) Photons: “Realizing a qubit as the state of a photon is appealing because
photons are relatively free of the that plagues other quantum systems.”

(b) Trapped ions: “Individual atomic ions can be confined in free space with nanometre precision
using appropriate from nearby electrodes.”

(c) Cold atoms: “An array of cold neutral atoms may be confined in free space by a pattern of
crossed , forming an optical lattice.”

https://dx.doi.org/10.1038/nature08812
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(d) Nuclear magnetic resonance: “In a , nuclear Larmor frequencies vary
from atom to atom [...] Irradiating the nuclei with resonant pulses allows
manipulation of nuclei of a distinct frequency, giving generic gates.”

(e) Quantum dots: “These ‘artificial atoms’ occur when a small semiconductor nanostructure, im-
purity or impurity complex binds one or more electrons or holes (empty valence-band states)
into a localized potential with ,
which is analogous to an electron bound to an .”

(f) Doped solids: “ may then be stored in either the
donor electron, or in the state of the single 31P nuclear spin, accessed via the electron-nuclear

coupling.”
(g) Nitrogen-vacancy centers: “The state of a nitrogen-vacancy centre may

then be coherently manipulated with resonant fields, and then detected
in a few milliseconds via spin-dependent fluorescence in an micro-
scope.”

(h) Superconductors: “There are three basic types of superconducting qubits— ,
and .”

Exercise 2.19. Visit https://en.wikipedia.org/wiki/List_of_companies_invo
lved_in_quantum_computing_or_communication for a list of companies involved in
quantum computing. For each of the following types of qubits, name a company that is using them.

(a) Photons
(b) Trapped ions
(c) Cold atoms
(d) Nuclear magnetic resonance (NMR)
(e) Quantum dots
(f) Defect qubits
(g) Superconductors

Exercise 2.20. Visit https://qubitzoo.org and pick your favorite qubit.
(a) What is the name of your qubit? (e.g., exchange-only qubit, not Steve.)
(b) What type of technology is your qubit?
(c) What is some motivation for building a qubit this way?

Exercise 2.21. Visit https://en.wikipedia.org/wiki/Qubit#Physical_impleme
ntations and pick a qubit.

(a) What is the physical system or technology used for your qubit (physical support)?
(b) What is the name of your type of qubit?
(c) What physical property is used to store information (information support)?
(d) What state is typically used for |0⟩?
(e) What state is typically used for |1⟩?

2.6 Quantum Gates

2.6.1 Linear Maps

Quantum gates act on qubits, like logic gates act on bits. In this section, we will
explore what quantum gates are.

A quantum gate transforms the state of a qubit into other states. As we will
see later, we often use the capital letter U to denote a quantum gate. For example,
consider a quantum gate that performs the following map:

https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication
https://en.wikipedia.org/wiki/List_of_companies_involved_in_quantum_computing_or_communication
https://qubitzoo.org
https://en.wikipedia.org/wiki/Qubit#Physical_implementations
https://en.wikipedia.org/wiki/Qubit#Physical_implementations
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U |0⟩=
√

2− i
2
|0⟩− 1

2
|1⟩,

U |1⟩= 1
2
|0⟩+

√
2+ i
2
|1⟩.

A quantum gate must be linear, meaning we can distribute it across superpositions:

U(α|0⟩+β |1⟩) = αU |0⟩+βU |1⟩

= α

(√
2− i
2
|0⟩− 1

2
|1⟩
)
+β

(
1
2
|0⟩+

√
2+ i
2
|1⟩
)

=

(
α

√
2− i
2

+β
1
2

)
|0⟩+

(
−α

1
2
+β

√
2+ i
2

)
|1⟩.

For this to be a valid quantum gate, the total probability must remain 1. Assuming
the original state was normalized, i.e., |α|2 + |β |2 = 1, we can calculate the total
probability by summing the norm-square of each amplitude to see if it is still 1:∣∣∣∣∣α

√
2− i
2

+β
1
2

∣∣∣∣∣
2

+

∣∣∣∣∣−α
1
2
+β

√
2+ i
2

∣∣∣∣∣
2

=

(
α

√
2− i
2

+β
1
2

)(
α
∗
√

2+ i
2

+β
∗ 1

2

)

+

(
−α

1
2
+β

√
2+ i
2

)(
−α

∗ 1
2
+β

∗
√

2− i
2

)

= |α|2 (
√

2− i)(
√

2+ i)
4

+αβ
∗
√

2− i
4

+βα
∗
√

2+ i
4

+ |β |2 1
4

+ |α|2 1
4
−αβ

∗
√

2− i
4
−βα

∗
√

2+ i
4

+ |β |2 (
√

2+ i)(
√

2− i)
4

= |α|2 3
4
+ |β |2 1

4
+ |α|2 1

4
+ |β |2 3

4
= |α|2 + |β |2

= 1.

So, U is a valid quantum gate. Then,

Quantum gates are linear maps that keep the total probability equal to 1.

In the next chapter, when we introduce linear algebra, we will learn that operators
correspond to tables of numbers called matrices, and a valid quantum gate is a type
of matrix called a unitary matrix. That is why quantum gates are often labeled U ,
for unitary.
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Exercise 2.22. Consider a map U that transforms the Z-basis states as follows:

U |0⟩= |0⟩+ |1⟩,
U |1⟩= |0⟩− |1⟩.

Say |ψ⟩= α|0⟩+β |1⟩ is a normalized quantum state, i.e., |α|2 + |β |2 = 1.
(a) Calculate U |ψ⟩.
(b) From your answer to (a), is U a valid quantum gate? Explain your reasoning.

Exercise 2.23. Consider a map U that transforms the Z-basis states as follows:

U |0⟩=
√

3
2
|0⟩+

√
3+ i
4
|1⟩,

U |1⟩=
√

3+ i
4
|0⟩−

√
3+3i
4
|1⟩.

Say |ψ⟩= α|0⟩+β |1⟩ is a normalized quantum state, i.e., |α|2 + |β |2 = 1.
(a) Calculate U |ψ⟩.
(b) From your answer to (a), is U a valid quantum gate? Explain your reasoning.

2.6.2 Classical Reversible Gates

Recall from Section 1.5 that a classical logic gate is reversible if its outputs are
unique. For example, a gate with input A and output B with the following truth table
is reversible, since it is always possible to determine the input from the output:

A B
0 1
1 0

Thus, the gate does the following to a bit:

0→ 1,
1→ 0.

How would this gate act on a qubit? It would map the following:

Gate|0⟩= |1⟩,
Gate|1⟩= |0⟩.

Then, acting on a superposition α|0⟩+β |1⟩, where |α|2 + |β |2 = 1, it would do the
following:

Gate(α|0⟩+β |1⟩) = α|1⟩+β |0⟩= β |0⟩+α|1⟩.

We see that α and β simply got swapped. So, the final state is normalized, since

|β |2 + |α|2 = |α|2 + |β |2 = 1.
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Thus, this classical reversible logic gate is also a valid quantum gate.
This is true in general. Any classical reversible logic gate simply permutes (shuf-

fles) the amplitudes around. This chapter is just on a single qubit, but jumping ahead
to Chapter 4 on multiple qubits, if there were more than two amplitudes, a classical
reversible logic gate would just permute them, so the state stays normalized. Thus,

Classical reversible logic gates are valid quantum gates.

In contrast, irreversible gates are not valid quantum gates. For example, consider
the irreversible gate with the following truth table:

A B
0 0
1 0

This would act on the basis states of a qubit as:

Gate|0⟩= |0⟩,
Gate|1⟩= |0⟩.

Then, acting on a superposition,

Gate(α|0⟩+β |1⟩) = α|0⟩+β |0⟩= (α +β )|0⟩.

Now, the amplitudes are not permuted. Instead, they are combined. The total prob-
ability of this is

|α +β |2 = |α|2 + |β |2 +α
∗
β +αβ

∗ = 1+α
∗
β +αβ

∗ ̸= 1,

so this is not a valid quantum gate.

Exercise 2.24. Consider each of the following classical logic gates with input A, output B, and
truth table shown below. Is each gate a valid quantum gate? Why?
(a)

A B
0 0
1 1

(b)
A B
0 1
1 1

Exercise 2.25. Consider each of the following classical logic gates with inputs A and B, outputs C
and D, and truth table shown below. Is each gate a valid quantum gate? Why?
(a)

A B C D
0 0 0 1
0 1 1 1
1 0 0 0
1 1 1 0

(b)
A B C D
0 0 0 0
0 1 0 0
1 0 1 0
1 1 1 1
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2.6.3 Common One-Qubit Quantum Gates

Although any probability-preserving linear map is a valid quantum gate, let us list
some important one-qubit gates that frequently appear in quantum computing:

• The identity gate turns |0⟩ into |0⟩ and |1⟩ into |1⟩, hence doing nothing:

I|0⟩= |0⟩,
I|1⟩= |1⟩.

This is a classical reversible gate (the identity gate), so it keeps states normal-
ized and is a valid quantum gate.
In Qubit Touchdown, this corresponds to the Identity Gate action card, which
does nothing to the football’s position.

• The Pauli X gate, or NOT gate, turns |0⟩ into |1⟩, and |1⟩ into |0⟩:

X |0⟩= |1⟩,
X |1⟩= |0⟩.

This is a classical reversible gate (the NOT gate), so it keeps states normalized
and is a valid quantum gate.
On the Bloch sphere, it can be shown that X is a rotation about the x-axis by
180◦:

x

y

z

With this rotation in mind, we geometrically see that X causes |0⟩ (the north
pole) to rotate to |1⟩ (the south pole), and vice versa. We also see that |i⟩ and
|−i⟩ rotate to each other, whereas |+⟩ and |−⟩ are unchanged. Note, however,
that mathematically X |−⟩=−|−⟩≡ |−⟩ since the global phase does not matter.
If we apply the X gate twice, we rotate around the x-axis of the Bloch sphere
by 360◦, which does nothing. Then, X2 = I. We can use this fact to simplify
consecutive applications of X . For example,

X1001 = X1000X =
(
X2)500

X = I500X = X .

In Qubit Touchdown, the Pauli X Gate action card corresponds to the X gate.
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• The Pauli Y gate turns |0⟩ into i|1⟩, and |1⟩ into −i|0⟩:

Y |0⟩= i|1⟩,
Y |1⟩=−i|0⟩.

This is not a classical gate at all because of the i and −i. Let us prove that it is
a valid quantum gate by acting on a general superposition:

Y (α|0⟩+β |1⟩) = α Y |0⟩︸︷︷︸
i|1⟩

+β Y |1⟩︸︷︷︸
−i|0⟩

= iα|1⟩− iβ |0⟩=−iβ |0⟩+ iα|1⟩.

The total probability of this is

|− iβ |2 + |iα|2 = (−iβ )(iβ ∗)+(iα)(−iα∗) = |β |2 + |α|2 = 1,

so it is a valid quantum gate.
On the Bloch sphere, it can be shown that Y is a rotation about the y-axis by
180◦:

x

y

z

So, if we apply the Y gate twice, we rotate around the y-axis of the Bloch sphere
by 360◦, which does nothing. Then, Y 2 = I. In Qubit Touchdown, the Pauli Y
Gate action card corresponds to the Y gate.

• The Pauli Z gate keeps |0⟩ as |0⟩ and turns |1⟩ into −|1⟩:

Z|0⟩= |0⟩,
Z|1⟩=−|1⟩.

This is not a classical gate at all. In Exercise 2.28, you will show that this is a
valid quantum gate.
On the Bloch sphere, it can be shown that Z is a rotation about the z-axis by
180◦:
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x

y

z

As before, Z2 = I. In Qubit Touchdown, the Pauli Z Gate action card is the Z
gate.

Exercise 2.26. Calculate Z217X101Y 50 (α|0⟩+β |1⟩).

Exercise 2.27. Prove that
(a) XZXZ(α|0⟩+β |1⟩) =−(α|0⟩+β |1⟩).
(b) ZXZX(α|0⟩+β |1⟩) =−(α|0⟩+β |1⟩).

This will be used later in the textbook when we discuss Grover’s algorithm.

• Phase gate, which is the square root of the Z gate (i.e., S2 = Z):

S|0⟩= |0⟩,
S|1⟩= i|1⟩.

In Exercise 2.28, you will show that this is a valid quantum gate.
On the Bloch sphere, it can be shown that S is a rotation about the z-axis by 90◦:

x

y

z

90◦

Now, S2 rotates by 90◦ twice, so it is equivalent to rotating by 180◦. Then,
S2 = Z. We would need to apply S four times in order to return to the same point
on the Bloch sphere, so S4 = I. In Qubit Touchdown, the Phase Gate action card
is the S gate.



2.6 Quantum Gates 105

• T gate (also called π/8 gate), which is the square root the S gate (i.e., T 2 = S),
or fourth root of the Z gate:

T |0⟩= |0⟩,

T |1⟩= eiπ/4|1⟩.

In Exercise 2.28, you will show that this is a valid quantum gate.
On the Bloch sphere, T is a rotation about the z-axis by 45◦:

x

y

z

45◦

Then, it is obvious that T 2 = S and T 4 = Z, since rotating by 45◦ twice is
equivalent to rotating by 90◦, and rotating by 45◦ four times is equivalent to
rotating by 180◦.

Exercise 2.28. Consider the gate Rz(θ), which rotates about the z-axis by angle θ :

Rz(θ)|0⟩= |0⟩,

Rz(θ)|1⟩= eiθ |1⟩.

The Z gate, S gate, and T gate are all specific instances of the Rz gate, with Z =Rz(π), S=Rz(π/2),
and T = Rz(π/4). Say |ψ⟩= α|0⟩+β |1⟩ is a normalized quantum state, i.e., |α|2 + |β |2 = 1.

(a) Calculate Rz(θ)|ψ⟩.
(b) Show that the total probability of Rz(θ)|ψ⟩ is 1, so Rz(θ) is a valid quantum gate, and hence,

Z, S, and T are all valid quantum gates.

• The Hadamard gate turns |0⟩ into |+⟩, and |1⟩ into |−⟩:

H|0⟩= 1√
2
(|0⟩+ |1⟩) = |+⟩,

H|1⟩= 1√
2
(|0⟩− |1⟩) = |−⟩.

In Exercise 2.29, you will show that this is a valid quantum gate.
On the Bloch sphere, it can be shown that H is a rotation about the x+ z-axis by
180◦:
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x

y

z

x+ z

Then, H maps between |0⟩ and |+⟩, between |1⟩ and |−⟩, and between |i⟩ and
|−i⟩. Let us also prove these algebraically. From the definition of the Hadamard
gate, we already have H|0⟩= |+⟩ and H|1⟩= |−⟩. Going in the other direction,

H|+⟩= H
1√
2
(|0⟩+ |1⟩)

=
1√
2
(H|0⟩+H|1⟩)

=
1√
2

[
1√
2
(|0⟩+ |1⟩)+ 1√

2
(|0⟩− |1⟩)

]
= |0⟩,

and similarly (Exercise 2.30),

H|−⟩= |1⟩.

We also have

H|i⟩= H
1√
2
(|0⟩+ i|1⟩)

=
1√
2
(H|0⟩+ iH|1⟩)

=
1√
2

[
1√
2
(|0⟩+ |1⟩)+ i√

2
(|0⟩− |1⟩)

]
=

1√
2

(
1+ i√

2
|0⟩+ 1− i√

2
|1⟩
)

=
1√
2

(
eiπ/4|0⟩+ e−iπ/4|1⟩

)
= eiπ/4 1√

2

(
|0⟩+ e−iπ/2|1⟩

)
= eiπ/4 1√

2
(|0⟩− i|1⟩)
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= eiπ/4|−i⟩
≡ |−i⟩.

Similarly (Exercise 2.30),

H|−i⟩= e−iπ/4|i⟩ ≡ |i⟩.

If we apply the H gate twice, we rotates by 360◦, which does nothing. So,
H2 = I.
In Qubit Touchdown, the Hadamard Gate action card is the Hadamard gate,
which is why it moves the football between 0 and +, between 1 and −, and
between i and −i.

Exercise 2.29. Say |ψ⟩= α|0⟩+β |1⟩ is a normalized quantum state, i.e., |α|2 + |β |2 = 1.
(a) Calculate H|ψ⟩.
(b) Show that the total probability of H|ψ⟩ is 1, so H is a valid quantum gate.

Exercise 2.30. Work out the math to show that
(a) H|−⟩= |1⟩.
(b) H|−i⟩= e−iπ/4|i⟩ ≡ |i⟩.

We can combine these quantum gates to create all sorts of states. For example,

HST H|0⟩= HST
1√
2
(|0⟩+ |1⟩)

= HS
1√
2

(
|0⟩+ eiπ/4|1⟩

)
= H

1√
2

(
|0⟩+ ei3π/4|1⟩

)
=

1√
2

[
1√
2
(|0⟩+ |1⟩)+ ei3π/4 1√

2
(|0⟩− |1⟩)

]
=

1
2

[(
1+ ei3π/4

)
|0⟩+

(
1− ei3π/4

)
|1⟩
]
, (2.9)

where in the third line, we used ieiπ/4 = eiπ/2eiπ/4 = ei3π/4. On the Bloch sphere,
this state is in the southern hemisphere:

x

y

z
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If we measure this qubit in the Z-basis {|0⟩, |1⟩}, the probability of getting |0⟩ is∣∣∣∣12 (1+ ei3π/4
)∣∣∣∣2 = 1

2

(
1+ ei3π/4

) 1
2

(
1+ e−i3π/4

)
=

1
4

(
1+ e−i3π/4 + ei3π/4 + e0

)
=

1
4

(
2+2cos

3π

4

)
=

1
2

(
1−
√

2
2

)
≈ 0.146,

where to go from the second to the third line, we used Euler’s formula Eq. (2.6) so
that eiθ + e−iθ = 2cosθ . Similarly, the probability of getting |1⟩ is∣∣∣∣12 (1− ei3π/4

)∣∣∣∣2 = 1
4

(
2−2cos

3π

4

)
=

1
2

(
1+

√
2

2

)
≈ 0.854.

As expected, since the state is in the southern hemisphere, there is a greater proba-
bility of getting |1⟩ when measuring the qubit.

Exercise 2.31. Calculate Y 51H99T 36Z25|0⟩.

Exercise 2.32. Prove that HXH = Z by showing that HXH|0⟩ and Z|0⟩ result in the same state,
and HXH|1⟩ and Z|1⟩ result in the same state. Such an equation is called a circuit identity.

Exercise 2.33. Answer the following:
(a) Calculate HT HT H|0⟩.
(b) If you measure this in the Z-basis {|0⟩, |1⟩}, what is the probability that you get |0⟩ and the

probability that you get |1⟩?

2.6.4 General One-Qubit Gates

You may have noticed that all the quantum gates from the last section were rotations
by some angle around some axis. This is true in general:

One-qubit quantum gates are rotations on the Bloch sphere.

This is because rotations on the Bloch sphere satisfy the two properties that we
require of quantum gates: they are linear maps, and they keep the total probability
equal to 1. Proving that rotations are linear requires some math, which we sketch
below. Rotations keep the total probability equal to 1 because a qubit is a point on
the Bloch sphere, so if we rotate it, it remains a point on the Bloch sphere.
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Mathematically, say we rotate by angle θ about some axis of rotation, which we
can specify in terms of the x-, y-, and z-axes. We denote the direction of the x-axis
by x̂, the direction of the y-axis by ŷ, and the direction of the z-axis by ẑ. Then, we
can denote the axis of rotation by n̂, and

n̂ = nxx̂+nyŷ+nzẑ.

Note n̂ is a unit vector, meaning it must has length 1, i.e., n2
x +n2

y +n2
z = 1.

For example, the Hadamard gate is a rotation by θ = 180◦ = π radians about the
axis halfway between the x- and z-axes, and we can express this axis by

n̂ =
1√
2

x̂+
1√
2

ẑ,

Note n2
x +n2

y +n2
z = 1/2+0+1/2 = 1, as expected.

Now, we state as a fact (without proof) that a rotation by angle θ about axis
n̂ = (nx,ny,nz) can be written in terms of I, X , Y , and Z:

U = eiγ
[

cos
(

θ

2

)
I− isin

(
θ

2

)
(nxX +nyY +nzZ)

]
, (2.10)

where γ is a global phase that we can set to anything (or drop), since it does not have
any physical relevance.

Returning to our example of the Hadamard gate, with θ = π and n̂ = (1/
√

2,0,
1/
√

2), we have

U = eiγ
[

cos
(

π

2

)
I− isin

(
π

2

)( 1√
2

X +0Y +
1√
2

Z
)]

=−ieiγ 1√
2
(X +Z) .

To show that U is the Hadamard gate, let us see how it acts on |0⟩ and |1⟩:

U |0⟩=−ieiγ 1√
2
(X +Z) |0⟩=−ieiγ 1√

2
(X |0⟩+Z|0⟩)

=−ieiγ 1√
2
(|1⟩+ |0⟩) =−ieiγ |+⟩,

U |1⟩=−ieiγ 1√
2
(X +Z) |1⟩=−ieiγ 1√

2
(X |1⟩+Z|1⟩)

=−ieiγ 1√
2
(|0⟩− |1⟩) =−ieiγ |−⟩.

We can drop the global phase of −ieiγ , so U |0⟩= |+⟩ and U |1⟩= |−⟩, which is the
Hadamard gate. Alternatively, we can choose γ = π/2, and then since −i = ei3π/2,
the global phase is −ieiγ = ei3π/2eiπ/2 = ei2π = 1.
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We can also use Eq. (2.10) to prove that rotations are linear. Note U is a sum of I,
X , Y , and Z with numbers as coefficients; we call this a linear combination of I, X ,
Y , and Z. Since each of these gates distribute over superpositions, U also distributes
over superpositions, and so it is linear:

U(α|0⟩+β |1⟩) = eiγ
[

cos
(

θ

2

)
I− isin

(
θ

2

)
(nxX +nyY +nzZ)

]
(α|0⟩+β |1⟩)

= αeiγ
[

cos
(

θ

2

)
I− isin

(
θ

2

)
(nxX +nyY +nzZ)

]
|0⟩

+βeiγ
[

cos
(

θ

2

)
I− isin

(
θ

2

)
(nxX +nyY +nzZ)

]
|1⟩

= αU |0⟩+βU |1⟩.

Exercise 2.34. Consider a rotation by 45◦ about the z-axis.
(a) What is n̂?
(b) Use Eq. (2.10) to express the rotation U is terms of I, X , Y , and Z.
(c) Find U |0⟩.
(d) Find U |1⟩.
(e) Show that U is the T gate, up to a global phase.

Exercise 2.35. Consider a rotation by 180◦ around the axis equidistant from the x-, y-, and z-axes.
Below, the first picture shows the axis on the Bloch sphere. It may be a little difficult to visualize,
however, so another description of it using a cube is shown below in the second picture. The cube
has a corner at the origin and edges of length s along the x-, y-, and z-axes. Then, the axis of rotation
goes through the origin and the point (s,s,s), and the axis of rotation is drawn as a thicker line.

x

y

z

x+ y + z

x

y

z

(s, s, s)
s

s

s

(a) Draw the Bloch sphere and show where |0⟩ goes after applying the rotation. Do this without
any calculations by visualizing the rotation on the Bloch sphere.

(b) Draw the Bloch sphere and show where |1⟩ goes after applying the rotation. Do this without
any calculations by visualizing the rotation on the Bloch sphere.

(c) What is n̂? Hint: It should have equal components in the x-, y-, and z-axes, and it should be a
unit vector.

(d) Use Eq. (2.10) to express the rotation U is terms of I, X , Y , and Z.
(e) Find U |0⟩.
(f) Find U |1⟩.



2.7 Quantum Circuits 111

2.7 Quantum Circuits

2.7.1 Circuit Diagrams

Just like we can draw a classical circuit diagram consisting of bits and logic gates,
we can draw quantum circuit diagrams consisting of qubits and quantum gates. For
example, HST H|0⟩ is

|0〉 H T S H

The circuit is read left-to-right, just like a classical circuit diagram. So, we start with
a single qubit in the |0⟩ state and apply a Hadamard gate H to it, followed by a T
gate, then a phase gate S, and finally another H gate. It is implied that we measure
the qubit at the end of the circuit. We can also explicitly draw the measurement as a
meter:

|0⟩ H T S H

2.7.2 Quirk

A great web-based tool for simulating quantum circuits is Quirk at https://alga
ssert.com/quirk:

There are a variety of quantum gates that users can drag and drop onto the circuit,
and users can also make custom gates. Each qubit is initially a |0⟩, as shown below:

https://algassert.com/quirk
https://algassert.com/quirk
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The state of each qubit is visualized a couple ways. First, the probability that a
measurement of the qubit yields |1⟩ is zero, and this is labeled as “Off.” Second,
the Bloch sphere representation of the qubit is shown, and the state is a point at the
north pole, as expected.

Now if we apply the X gate, Quirk shows the following:

Note Quirk uses ⊕ to denote a single X gate, whereas we use X (later, we will
also use ⊕ when the X gate is controlled by another qubit). Since X |0⟩ = |1⟩, the
probability of measuring |1⟩ is 1. This is labeled as “On,” and the Bloch sphere now
shows the state at the south pole, as expected.

Now consider H|0⟩= |+⟩:

In Quirk, it shows a 50% chance of being |1⟩ when measured in the Z-basis, and it
lies on the x-axis of the Bloch sphere, as expected.

Finally, let us simulate HST H|0⟩, which we earlier computed by hand to have a
0.146 probability of being |0⟩ and a 0.854 probability of being |1⟩. Simulating it in
Quirk,

Quirk displays that the probability of measuring |1⟩ is 85.4% = 0.854, in agreement
with our previous calculations from Eq. (2.9).

Exercise 2.36. Answer the following about HY T HX |0⟩.
(a) Draw HY T HX |0⟩ as a quantum circuit.
(b) Using Quirk, sketch where HY T HX |0⟩ appears on the Bloch sphere.
(c) Using Quirk, if you measure HY T HX |0⟩ in the Z-basis, what is the probability that you get
|0⟩ and the probability that you get |1⟩?

2.8 Summary

The smallest unit of quantum information is the qubit. Besides having two orthog-
onal states |0⟩ and |1⟩, a qubit can be a superposition of them with complex am-
plitudes. The norm-square of the amplitudes gives the probability of measuring the
qubit as a 0 or 1, and depending on the outcome, the qubit collapses to |0⟩ or |1⟩.
Qubits can also be measured in other bases. A qubit can be visualized on the Bloch
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sphere. Qubits are operated on by quantum gates, which are linear maps that keep
the total probability equal to 1. A single-qubit gate is a rotation on the Bloch sphere.
A quantum circuit is a drawing to depict what quantum gates act on a qubit, and an
online simulator for quantum circuits is Quirk.





Chapter 3
Linear Algebra

So far, we have done quantum computing using elementary algebra and using the
fact that quantum gates are linear, so they distribute across superpositions. This can
be tedious, however, such as when calculating HY T HX(α|0⟩+β |1⟩). Fortunately,
there is an easier way to do the math of quantum computing using linear algebra,
where numbers are arranged in columns, rows, and tables (called matrices). Ulti-
mately, linear algebra is a tool. Learning how to use a new tool may be difficult at
first, but ultimately, it makes the job easier. We will show how linear algebra can be
used for many of the calculations from the previous chapter.

We had a similar progression with classical computing. In Chapter 1, we could
do all of classical computing using truth tables, including to show that ABC+ABC+
ABC+ABC = A+B+AC. Boolean algebra makes such calculations easier, but it
requires becoming proficient enough with the tool. Linear algebra is to quantum
computing as boolean algebra is to classical computing.

3.1 Quantum States

3.1.1 Column Vectors

We write |0⟩ and |1⟩ as column vectors, which are vertical lists of numbers:

|0⟩=
(

1
0

)
, |1⟩=

(
0
1

)
.

Our notation is to write vectors in large parenthesis, but some people use square
brackets instead. These are called column vectors because they have a single col-
umn, and they have length 2 because they have two entries. Writing |0⟩ and |1⟩, this
way, it is easy to write superpositions of them. A generic qubit with amplitudes α

and β would be

115
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|ψ⟩= α|0⟩+β |1⟩= α

(
1
0

)
+β

(
0
1

)
=

(
α

0

)
+

(
0
β

)
=

(
α

β

)
.

For example, |i⟩ can be written as a column vector:

|i⟩= 1√
2
|0⟩+ i√

2
|1⟩= 1√

2

(
1
0

)
+

i√
2

(
0
1

)
=

(
1/
√

2
0

)
+

(
0

i/
√

2

)
=

(
1/
√

2
i/
√

2

)
=

1√
2

(
1
i

)
.

Exercise 3.1. A qubit is in the following state:

1
2
|0⟩−

√
3

2
|1⟩.

Write this state as a column vector.

Exercise 3.2. A qubit is in the following state:(√
3/2

1/2

)
.

If you measure this qubit in the Z-basis {|0⟩, |1⟩}, what states can you get and with what probabil-
ities?

3.1.2 Row Vectors

Next, the transpose of a column vector is obtained by rewriting it as a row vector,
and it is denoted by ⊺ (a superscript letter T). So,(

α

β

)⊺

=
(
α β

)
.

In quantum computing, we typically use the conjugate transpose, which is obtained
by taking the complex conjugate of each component of the transpose. It is denoted
by † (a dagger): (

α

β

)†

=
(
α∗ β ∗

)
.

This is used so frequently in quantum mechanics that bra-ket notation has a special
way of writing it: with an angle bracket and a vertical bar, called a bra:

⟨ψ|=
(
α∗ β ∗

)
.
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Then, a bra is the conjugate transpose of a ket, and conversely, a ket is the conjugate
transpose of a bra. Flipping between kets and bras is called “taking the dual”, and the
dual of a ket is its bra version, and the dual of a bra is its ket version. For example,

the dual of |i⟩=
(

1/
√

2
i/
√

2

)
is

⟨i|=
(
1/
√

2 −i/
√

2
)
.

We can also take the conjugate transpose of |0⟩=
(

1
0

)
and |1⟩=

(
0
1

)
to get the

Z-basis vectors as bras:

⟨0|=
(
1 0
)
, ⟨1|=

(
0 1
)
.

Then, ⟨ψ| can be written as

⟨ψ|=
(
α∗ β ∗

)
=
(
α∗ 0

)
+
(
0 β ∗

)
= α

∗(1 0
)
+β

∗(0 1
)

= α
∗⟨0|+β

∗⟨1|.

Notice this has amplitudes α∗ and β ∗, so when we go from |ψ⟩ to ⟨ψ|, we need
to take the complex conjugate of the amplitudes. For example, taking the dual of
|i⟩= 1√

2
|0⟩+ i√

2
|1⟩, we get

⟨i|= 1√
2
⟨0|− i√

2
⟨1|.

To summarize, to go between kets and bras,

|ψ⟩=
(

α

β

)
⇐⇒ ⟨ψ|=

(
α∗ β ∗

)
,

|ψ⟩= α|0⟩+β |1⟩ ⇐⇒ ⟨ψ|= α∗⟨0|+β ∗⟨1|.

Exercise 3.3. Consider the following two states |a⟩ and |b⟩:

|a⟩=
√

3
2
|0⟩+ 1

2
|1⟩, |b⟩= 2

3
|0⟩+ 1−2i

3
|1⟩.

Answer the following questions:
(a) What is ⟨a| in terms of ⟨0| and ⟨1|?
(b) What is ⟨a| as a row vector?
(c) What is ⟨b| in terms of ⟨0| and ⟨1|?
(d) What is ⟨b| as a row vector?
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3.2 Inner Products

3.2.1 Inner Products Are Scalars

Say we have two states,

|ψ⟩=
(

α

β

)
, and |φ⟩=

(
γ

δ

)
.

One way to multiply |ψ⟩ and |φ⟩ is by taking their inner product, and it is defined
as ⟨ψ| times |φ⟩:

⟨ψ||φ⟩=
(
α∗ β ∗

)(γ

δ

)
.

Typically, we combine the two vertical bars into one and write the inner product as

⟨ψ|φ⟩=
(
α∗ β ∗

)(γ

δ

)
.

We call ⟨ψ|φ⟩ a bra-ket or bracket, and the word bracket is the origin of the terms
bra and ket. To evaluate the inner product, from linear algebra, we multiply a row
vector and a column vector by multiplying the first entry of each vector together,
multiplying the second entry of each vector together, and adding them (i.e., taking
their dot product):

⟨ψ|φ⟩= α
∗
γ +β

∗
δ .

Note the result is just a number, or scalar. So, an inner product is also called a scalar
product.

The inner product of |φ⟩ and |ψ⟩ is just the complex conjugate of the inner prod-
uct of |ψ⟩ and |φ⟩:

⟨φ |ψ⟩= ⟨ψ|φ⟩∗.

To prove this, we can just do a simple calculation:

⟨φ |ψ⟩=
(
γ∗ δ ∗

)(α

β

)
= γ

∗
α +δ

∗
β = (γα

∗+δβ
∗)∗ = (α∗γ +β

∗
δ )∗

= ⟨ψ|φ⟩∗.

Inner products have several uses, which we will see next and throughout this
chapter.

Exercise 3.4. Consider

|a⟩= 3+ i
√

3
4
|0⟩+ 1

2
|1⟩,

|b⟩= 1
4
|0⟩+

√
15
4
|1⟩.

(a) Find ⟨a|b⟩.
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(b) Find ⟨b|a⟩.
(c) What is the relationship between your answers to parts (a) and (b)?

3.2.2 Orthonormality

Several properties can be expressed using the inner product:

• First, let us take the inner product of |ψ⟩= α|0⟩+β |1⟩ with itself:

⟨ψ|ψ⟩=
(
α∗ β ∗

)(α

β

)
= |α|2 + |β |2 = 1.

So, ⟨ψ|ψ⟩ is just the total probability, and if ⟨ψ|ψ⟩= 1, the state |ψ⟩ is normal-
ized.

• Consider the inner product of the Z-basis states |0⟩ and |1⟩:

⟨0|1⟩=
(
1 0
)(0

1

)
= 1 ·0+0 ·1 = 0+0 = 0.

Next, consider the inner product of the X-basis states |+⟩ and |−⟩:

⟨+|−⟩= 1√
2

(
1 1
) 1√

2

(
1
−1

)
=

1
2
(
1 1
)( 1
−1

)
=

1
2
(1−1) = 0.

Finally, consider the inner product of the Y -basis states |i⟩ and |−i⟩:

⟨i|−i⟩= 1√
2

(
1 −i

) 1√
2

(
1
−i

)
=

1
2
(
1 −i

)( 1
−i

)
=

1
2
(
1+ i2

)
= 0,

where we used i2 = (
√
−1)2 =−1.

In all of these, the outcome was zero. In fact, any two states on opposite sides of
the Bloch sphere have zero inner product (Exercise 3.8). We say that states with
zero inner product are orthogonal. Thus, orthogonal states are distinct measure-
ment outcomes.

• These two properties, normalized and orthogonal, can be combined into a sin-
gle word, orthonormal. So |0⟩ and |1⟩ are orthonormal because each state is
individually normalized, and they are orthogonal to each other. Similarly, |+⟩
and |−⟩ are orthonormal, and |i⟩ and |−i⟩ are orthonormal.

Exercise 3.5. Consider a qubit in the following state

|ψ⟩= A(2|0⟩+3i|1⟩) .

(a) Calculate ⟨ψ|ψ⟩.
(b) Find a value of A that normalizes |ψ⟩.

Exercise 3.6. Determine if each pair of states is orthogonal or not.
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(a) |+⟩ and |−⟩.
(b) |0⟩ and |+⟩.

(c)
1+
√

3i
4
|0⟩+

√
2− i
2
|1⟩ and

√
2+ i
2
|0⟩+ −1+

√
3i

4
|1⟩.

Exercise 3.7. Consider

|a⟩= 3+ i
√

3
4
|0⟩+ 1

2
|1⟩,

|b⟩= 1
4
|0⟩+ x|1⟩.

(a) Find x so that |a⟩ and |b⟩ are orthogonal.
(b) Find x so that |b⟩ is normalized.
(c) For what values of x (if any) are |a⟩ and |b⟩ orthonormal?

Exercise 3.8. Say we have two qubits |a⟩ and |b⟩. We can parameterize them in spherical coordi-
nates (θ ,φ) on the Bloch sphere:

|a⟩= cos
(

θa

2

)
|0⟩+ eiφa sin

(
θa

2

)
|1⟩,

|b⟩= cos
(

θb

2

)
|0⟩+ eiφb sin

(
θb

2

)
|1⟩.

Now say |a⟩ and |b⟩ lie on opposite points of the Bloch sphere. This means θb = π − θa and
φb = φa+π . Show that ⟨a|b⟩= 0, i.e., they are orthogonal. Possibly useful trigonometric identities:

sin(u± v) = sin(u)cos(v)± cos(u)sin(v),

cos(u± v) = cos(u)cos(v)∓ sin(u)sin(v).

3.2.3 Projection, Measurement, and Change of Basis

Next, inner products can be used to find the amplitudes of quantum states, which
can be norm-squared to yield measurement probabilities. The amplitudes can also
be used to change the basis. As an example, consider a qubit in the following state:

|ψ⟩=
√

3
2
|0⟩+ 1

2
|1⟩.

It appears on the Bloch sphere as shown below:
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x

y

z

|0⟩

|1⟩

|+⟩

|−⟩
|i⟩

|−i⟩ •

√
3

2
|0⟩+ 1

2
|1⟩

In Section 2.3.3, we measured this qubit in the Z-basis, X-basis, Y -basis, and a
fourth basis. Let us see how to reproduce the results using inner products.

First, we want to find the possible measurement outcomes and their probabili-
ties if we measure |ψ⟩ in the {|0⟩, |1⟩} basis. Although we can just “read off” the
amplitudes of |ψ⟩ with respect to |0⟩ and |1⟩ and take the norm-square of each to
find the probabilities, we can also find the amplitudes using inner products and the
orthonormality of {|0⟩, |1⟩}. For example, the amplitude of |0⟩ is

⟨0|ψ⟩= ⟨0|
(√

3
2
|0⟩+ 1

2
|1⟩
)

=

√
3

2
⟨0|0⟩︸︷︷︸

1

+
1
2
⟨0|1⟩︸︷︷︸

0

=

√
3

2
.

When calculating this, the amplitude from |1⟩ vanishes because |0⟩ and |1⟩ are or-
thogonal (i.e., ⟨0|1⟩= 0). We get just the amplitude from |0⟩ because |0⟩ is normal-
ized (i.e., ⟨0|0⟩= 1). Similarly, the amplitude of |1⟩ is

⟨1|ψ⟩= ⟨1|
(√

3
2
|0⟩+ 1

2
|1⟩
)

=

√
3

2
⟨1|0⟩︸︷︷︸

0

+
1
2
⟨1|1⟩︸︷︷︸

1

=
1
2
.

Taking the norm-square of each of these, the possible measurement outcomes are
|0⟩ with probability 3/4 and |1⟩ with probability 1/4. Since ⟨0|ψ⟩ and ⟨1|ψ⟩ are the
amplitudes of |0⟩ and |1⟩, respectively, we can write the state of the qubit as

|ψ⟩= ⟨0|ψ⟩|0⟩+ ⟨1|ψ⟩|1⟩.

This technique is far more useful when we cannot just read off the amplitudes,
such as when measuring in other bases. Let us measure in the X-basis {|+⟩, |−⟩}
now. The amplitude of |+⟩ is

⟨+|ψ⟩= 1√
2
(⟨0|+ ⟨1|)

(√
3

2
|0⟩+ 1

2
|1⟩
)



122 3 Linear Algebra

=
1√
2

(√
3

2
⟨0|0⟩︸︷︷︸

1

+
1
2
⟨0|1⟩︸︷︷︸

0

+

√
3

2
⟨1|0⟩︸︷︷︸

0

+
1
2
⟨1|1⟩︸︷︷︸

1

)

=
1√
2

(√
3

2
+

1
2

)

=

√
3+1

2
√

2
.

This agrees with our calculation in Section 2.3.3. Similarly, the amplitude of |−⟩ is
⟨−|ψ⟩, but now let us calculate it using linear algebra:

⟨−|ψ⟩= 1√
2

(
1 −1

)(√3/2
1/2

)
=

1√
2

(√
3

2
− 1

2

)
=

√
3−1

2
√

2
.

Again, this agrees with Section 2.3.3. This approach is especially convenient be-
cause we can do the calculations using a computer algebra system that supports
linear algebra, like Mathematica or SageMath:

• In Mathematica,

psi={{Sqrt[3]/2},{1/2}};
minus={{1/Sqrt[2]},{-1/Sqrt[2]}};
ConjugateTranspose[minus].psi

The first line defines a column vector named psi (for |ψ⟩), and the second line
defines a column vector named minus (for |−⟩). To take their inner product,
we take the conjugate transpose of minus (which is ⟨−|) and perform a vector
multiplication (denoted by the period) with psi. The result of this is

√
3−1

2
√

2
,

as expected.
• In SageMath,

sage: psi = vector([sqrt(3)/2,1/2])
sage: minus = vector([1/sqrt(2),-1/sqrt(2)])
sage: minus.conjugate()*psi
1/4*sqrt(3)*sqrt(2) - 1/4*sqrt(2)

The first line defines a vector psi (for |ψ⟩), and the second line defines a vector
minus (for |−⟩). Note we do not need to specify whether it is a column vector
or row vector in SageMath. It will automatically transpose the vector to what-
ever shape is needed. In the third line, we calculate minus.conjugate() (for
⟨−|) and multiply it onto psi using an asterisks, yielding the fourth line as the
answer. Let us simplify it:

(1/4)
√

3
√

2− (1/4)
√

2 =

√
3
√

2
4
−
√

2
4

=

√
3−1

2
√

2
.
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This matches what we expected.

Since ⟨+|ψ⟩ and ⟨−|ψ⟩ are the amplitudes of |+⟩ and |−⟩, respectively, we can
write the state of the qubit in the {|+⟩, |−⟩} basis as

|ψ⟩= ⟨+|ψ⟩|+⟩+ ⟨−|ψ⟩|−⟩.

In Section 2.3.3, we also measured |ψ⟩ in the Y -basis and in a fourth basis. These
will be left as Exercise 3.9.

In general,

For an orthonormal basis {|a⟩, |b⟩}, the state of a qubit can be written as

|ψ⟩= α|a⟩+β |b⟩,

where α = ⟨a|ψ⟩ and β = ⟨b|ψ⟩.

Finally, we end with some terminology. We have been saying that ⟨a|ψ⟩ is the
amplitude of |ψ⟩ in |a⟩. We can also say that ⟨a|ψ⟩ is the amount of |ψ⟩ that is in
|a⟩. Or, ⟨a|ψ⟩ is the amount that |ψ⟩ and |a⟩ overlap. In mathematical language,
⟨a|ψ⟩ is the projection of |ψ⟩ onto |a⟩.

Exercise 3.9. Consider a qubit in the following state

|ψ⟩=
√

3
2
|0⟩+ 1

2
|1⟩.

Consider measuring this qubit in the Y -basis {|i⟩, |−i⟩} and the orthonormal basis {|a⟩, |b⟩}, where

|a⟩=
√

3
2
|0⟩+ i

2
|1⟩,

|b⟩= i
2
|0⟩+

√
3

2
|1⟩.

(a) Calculate ⟨i|ψ⟩.
(b) Calculate ⟨−i|ψ⟩.
(c) If you measure the qubit in the Y -basis, what states can you get and with what probabilities?
(d) Calculate ⟨a|ψ⟩.
(e) Calculate ⟨b|ψ⟩.
(f) If you measure the qubit in the {|a⟩, |b⟩} basis, what states can you get and with what proba-

bilities?
Hint: Your answers should agree with Section 2.3.3.

Exercise 3.10. Consider a qubit in the following state

|ψ⟩= 3+ i
√

3
4
|0⟩− 1

2
|1⟩,

which lies on the Bloch sphere at (θ ,φ) = (π/3,5π/6).
(a) If you measure it in the Z-basis {|0⟩, |1⟩}, what states can you get and with what probabilities?
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(b) If you measure it in the X-basis {|+⟩, |−⟩}, what states can you get and with what probabili-
ties?

(c) If you measure it in the Y -basis {|i⟩, |−i⟩}, what states can you get and with what probabili-
ties?

Exercise 3.11. A qubit is in the state

|ψ⟩= 1√
6

(
1−2i

1

)
.

(a) Express this state in the {|+⟩, |−⟩} basis.
(b) Express this state in the {|i⟩, |−i⟩} basis.

3.3 Quantum Gates

3.3.1 Gates as Matrices

Recall a quantum gate U generally turns |0⟩ and |1⟩ into superpositions of |0⟩ and
|1⟩:

U |0⟩= a|0⟩+b|1⟩=
(

a
b

)
,

U |1⟩= c|0⟩+d|1⟩=
(

c
d

)
.

We can arrange the resulting amplitudes side-by-side, resulting in a matrix, which
is a rectangular array/table of numbers:

U =

((
a
b

) (
c
d

))
=

(
a c
b d

)
.

This is a 2×2 matrix because it has two rows and two columns. Plugging this matrix
into U |0⟩ and U |1⟩, we get

U |0⟩=
(

a c
b d

)(
1
0

)
=

(
a
b

)
,

U |1⟩=
(

a c
b d

)(
0
1

)
=

(
c
d

)
.

These correctly suggest that we can multiply a matrix and a vector in the following
manner: To get the first (second) entry, we take the first (second) row of the matrix
and multiply it component-by-component with the vector, then add the results:
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a c
b d

)(
1
0

)
=

(
a ·1+ c ·0
b ·1+d ·0

)
=

(
a
b

)
,(

a c
b d

)(
0
1

)
=

(
a ·0+ c ·1
b ·0+d ·1

)
=

(
c
d

)
.

This is exactly the way matrices and vectors multiply in linear algebra.
Of course, U can also act on superpositions. If a qubit is in the state

|ψ⟩= α|0⟩+β |1⟩=
(

α

β

)
,

then applying U transforms this to

U |ψ⟩= α(a|0⟩+b|1⟩)+β (c|0⟩+d|1⟩)
= (aα + cβ )|0⟩+(bα +dβ )|1⟩

=

(
aα + cβ

bα +dβ

)
.

Let us show that the matrix representation of this yields the expected result:

U |ψ⟩=
(

a c
b d

)(
α

β

)
=

(
aα + cβ

bα +dβ

)
.

This is exactly what we expect.
In the language of linear algebra, quantum gates are matrices. Of course, the

matrix must ensure that the total probability remains 1, so in the previous example,
we must have |aα + cβ |2 + |bα +dβ |2 = 1. This yields the following point:

Quantum gates are matrices that keep the total probability equal to 1.

For example, we previously showed in Section 2.6.1 that the following is a valid
quantum gate because it keeps the total probability equal to 1:

U |0⟩=
√

2− i
2
|0⟩− 1

2
|1⟩=

(√
2−i
2
− 1

2

)
,

U |1⟩= 1
2
|0⟩+

√
2+ i
2
|1⟩=

(
1
2√
2+i
2

)
.

Then, as a matrix,

U =

(√
2−i
2

1
2

− 1
2

√
2+i
2

)
.
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In Quirk, we can create this quantum gate by clicking the “Make Gate” button at
the top of the page. A dialog box will pop up with different options, and we want to
create a gate from a matrix:

We enter the matrix, give it a name, and then click “Create Matrix Gate.” Then, it
will appear in the bottom-right toolbar under “Custom Gates:”

We can drag this onto the main circuit like any other gate. Here it is, along with a T
and H gate:

From this, we see that HTU |0⟩ has a 57.3% chance of collapsing to |1⟩, and hence
a 42.7% chance of collapsing to a |0⟩.

Exercise 3.12. Consider an operator U performs the following mapping on the Z-basis states:

U |0⟩= 1√
2

(
1
−i

)
, U |1⟩= 1√

2

(
−i
1

)
.

(a) What is U as a matrix?

(b) What is U
(

α

β

)
?

(c) From your answer to (b), is U a valid quantum gate? Explain your reasoning.
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Exercise 3.13. A quantum gate U performs the following mapping on the Z-basis states:

U |0⟩= 1
2
√

3
[(3+ i)|0⟩− (1+ i)|1⟩] ,

U |1⟩= 1
2
√

3
[(1− i)|0⟩+(3− i)|1⟩] .

(a) What is U as a matrix?
(b) Create U as a custom gate in Quirk. Using Quirk, if you measure HUH|0⟩, what are the

possible outcomes, and with what probabilities?

3.3.2 Common One-Qubit Gates as Matrices

Previously, we introduced several common one-qubit gates, including the identity
gate I, Pauli X , Y , and Z gates, the phase gate S, the T gate, and the Hadamard gate
H. Now, each of these can be represented as a matrix:

Gate Action on Computational Basis Matrix Representation

Identity I|0⟩= |0⟩
I =

(
1 0
0 1

)
I|1⟩= |1⟩

Pauli X
X |0⟩= |1⟩

X =

(
0 1
1 0

)
X |1⟩= |0⟩

Pauli Y
Y |0⟩= i|1⟩

Y =

(
0 −i
i 0

)
Y |1⟩=−i|0⟩

Pauli Z
Z|0⟩= |0⟩

Z =

(
1 0
0 −1

)
Z|1⟩=−|1⟩

Phase S
S|0⟩= |0⟩

S =

(
1 0
0 i

)
S|1⟩= i|1⟩

T
T |0⟩= |0⟩

T =

(
1 0
0 eiπ/4

)
T |1⟩= eiπ/4|1⟩

Hadamard H
H|0⟩= 1√

2
(|0⟩+ |1⟩)

H = 1√
2

(
1 1
1 −1

)
H|1⟩= 1√

2
(|0⟩− |1⟩)

Of particular note is

I =
(

1 0
0 1

)
.

This is called the 2×2 identity matrix. When it acts on a vector, it does nothing. For
example, (

1 0
0 1

)(
α

β

)
=

(
1α +0β

0α +1β

)
=

(
α

β

)
.
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The same is true of large matrices. An N×N matrix with 1’s on the diagonal and
0’s everywhere else is called the N×N identity matrix.

Exercise 3.14. Recall from Eq. (2.10) than a single-qubit gate is a rotation by some angle θ about
some axis n̂ = (nx,ny,nz). Consider a quantum gate that rotates by 90◦ about the y-axis. Using
Eq. (2.10) with γ = 0, what is this gate as a matrix?

3.3.3 Sequential Quantum Gates

Using linear algebra, we can compute the effect of a sequence of quantum gates. For
example, we had previously shown in Eq. (2.9) that

HST H|0⟩= 1
2

[(
1+ ei3π/4

)
|0⟩+

(
1− ei3π/4

)
|1⟩
]
.

Now, we can perform this same calculation using linear algebra by multiply each
matrix onto the vector:

HST H|0⟩= 1√
2

(
1 1
1 −1

)(
1 0
0 i

)(
1 0
0 eiπ/4

)
1√
2

(
1 1
1 −1

)(
1
0

)
=

1
2

(
1 1
1 −1

)(
1 0
0 i

)(
1 0
0 eiπ/4

)(
1
1

)
=

1
2

(
1 1
1 −1

)(
1 0
0 i

)(
1

eiπ/4

)
=

1
2

(
1 1
1 −1

)(
1

ei3π/4

)
=

1
2

(
1+ ei3π/4

1− ei3π/4

)
.

We can also compute this using any computing system that supports linear algebra,
such as Mathematica or SageMath:

• In Mathematica,
zero = {{1}, {0}};
H = 1/Sqrt[2] {{1, 1}, {1, -1}};
S = {{1, 0}, {0, I}};
T = {{1, 0}, {0, Eˆ(I Pi/4)}};
H.S.T.H.zero

The first line defines a column vector named zero, and the second, third, and
fourth lines define the quantum gates as matrices. The fifth line multiplies them
together. Note a period (.) must be used for matrix multiplication; an asterisk
(*) denotes element-by-element multiplication. The output of this code is{{

1
2
+

1
2

ie
iπ
4

}
,

{
1
2
− 1

2
ie

iπ
4

}}
,
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which is precisely what we calculated by hand since i = eiπ/2, and so ieiπ/4 =
eiπ/2eiπ/4 = ei(π/2+π/4) = ei3π/4.

• In SageMath,

sage: zero = vector([1,0]).column()
sage: H = 1/sqrt(2) * Matrix([[1,1],[1,-1]])
sage: S = Matrix([[1,0],[0,i]])
sage: T = Matrix([[1,0],[0,eˆ(i*pi/4)]])
sage: H*S*T*H*zero
[ (1/4*I - 1/4)*sqrt(2) + 1/2]
[-(1/4*I - 1/4)*sqrt(2) + 1/2]

The first line defines a column vector named zero, and the next three lines define
the quantum gates as matrices. The fifth line multiplies them together, and the
final two lines are the output, which is a column vector:( ( i

4 −
1
4

)√
2+ 1

2
−
( i

4 −
1
4

)√
2+ 1

2

)
.

Since (i/4−1/4)
√

2 = (i−1)/(2
√

2) and (i−1)/
√

2 = ei3π/4, this becomes

1
2

(
1+ ei3π/4

1− ei3π/4

)
,

which is exactly what we had before.

Exercise 3.15. In Section 3.3.1, we simulated the following circuit in Quirk:

where

U =

(√
2−i
2

1
2

− 1
2

√
2+i
2

)
.

Calculate HTU |0⟩.

3.3.4 Circuit Identities

In Exercise 2.32, we proved the circuit identity HXH = Z by showing that HXH|0⟩
and Z|0⟩ result in the same state, and HXH|1⟩ and Z|1⟩ result in the same state. We
can prove HXH = Z another way using linear algebra:

HXH =
1√
2

(
1 1
1 −1

)(
0 1
1 0

)
1√
2

(
1 1
1 −1

)
=

1
2

(
1 1
1 −1

)(
0 1
1 0

)(
1 1
1 −1

)
.
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To continue this calculation, let us multiply the two matrices on the right (X and H).
The procedure is very similar to multiplying a matrix onto a column vector, except
we now have two column vectors. So, we distribute the middle matrix across the
two column vectors of the rightmost matrix.

HXH =
1
2

(
1 1
1 −1

)((
0 1
1 0

)(
1
1

) (
0 1
1 0

)(
1
−1

))

=
1
2

(
1 1
1 −1

)((
1
1

) (
−1
1

))

=
1
2

(
1 1
1 −1

)(
1 −1
1 1

)
.

Now, we can multiply these two matrices by again distributing the left matrix so that
it multiples both columns of the right vector:

HXH =
1
2

((
1 1
1 −1

)(
1
1

) (
1 1
1 −1

)(
−1
1

))

=
1
2

((
2
0

) (
0
−2

))
=

1
2

(
2 0
0 −2

)
=

(
1 0
0 −1

)
= Z.

So, we have proved HXH = Z. We can also perform these calculations using a
computer algebra system that supports linear algebra, such as Mathematica or Sage-
Math:

• In Mathematica,

H = 1/Sqrt[2] {{1, 1}, {1, -1}};
X = {{0, 1}, {1, 0}};
H.X.H

This defines the H and X gates as matrices and then multiplies them together,
and the output is

{{1,0},{0,-1}}.

This is precisely Z as a matrix.
• In SageMath,

sage: H = 1/sqrt(2) * Matrix([[1,1],[1,-1]])
sage: X = Matrix([[0,1],[1,0]])
sage: H*X*H
[ 1 0]
[ 0 -1]

This defines the H and X gates as matrices and then multiplies them together,
and the output is a 2×2 matrix, which is precisely Z.
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Exercise 3.16. Prove that XY = iZ two different ways:
(a) Show that XY |0⟩= iZ|0⟩ and XY |1⟩= iZ|1⟩.
(b) Multiply XY as matrices and show that it equals iZ.

3.3.5 Unitarity

Recall from Section 3.3.1 that if a quantum gate U transforms |0⟩ and |1⟩ as follows

U |0⟩= a|0⟩+b|1⟩=
(

a
b

)
,

U |1⟩= c|0⟩+d|1⟩=
(

c
d

)
,

then U can be written as a 2×2 matrix:

U =

(
a c
b d

)
.

If we apply it to a state |ψ⟩= α|0⟩+β |1⟩, we get

U |ψ⟩=
(

a c
b d

)(
α

β

)
=

(
aα + cβ

bα +dβ

)
.

We see that U |ψ⟩ is a column vector, so we can also write it as a ket |Uψ⟩:

U |ψ⟩= |Uψ⟩.

Now, consider the conjugate transpose of |Uψ⟩:

⟨Uψ|=
(
a∗α∗+ c∗β ∗ b∗α∗+d∗β ∗

)
=
(
α∗ β ∗

)(a∗ b∗

c∗ d∗

)
=
(
α∗ β ∗

)(a c
b d

)†

= ⟨ψ|U†,

where the second equality comes from the convention for multiplying a row vector
and a matrix, where the first column of the matrix is multiplied by the row vector
according to the usual rule to yield the first entry, and the second column of the
matrix is multiplied by the row vector according to the usual rule to yield the second
entry. As another proof, a property of the (conjugate) transpose is that (AB)† =B†A†,
and since |ψ⟩† = ⟨ψ|, we have

⟨Uψ|= (|Uψ⟩)† = (U |ψ⟩)† = |ψ⟩†U† = ⟨ψ|U†.

To summarize,



132 3 Linear Algebra

|Uψ⟩=U |ψ⟩,
⟨Uψ|= ⟨ψ|U†.

(3.1)

Using this, we can come up with an easy way to determine whether a matrix
keeps the total probability equal to 1. Consider a quantum gate (matrix) U . If it acts
on |ψ⟩, we have

U |ψ⟩= |Uψ⟩.

For U to be a quantum gate, this must be normalized. That is, the inner product of
|Uψ⟩ with itself must equal 1:

⟨Uψ|Uψ⟩= 1

⟨ψ|U†U |ψ⟩= ⟨ψ|ψ⟩
U†U = I.

A matrix that satisfies this property U†U = I (and UU† = I) is called unitary. Thus,

Quantum gates are unitary matrices, and unitary matrices are quantum gates.

This is why we typically use U to denote a quantum gate. It stands for unitary.
As an example application of this, is the following matrix a quantum gate?

U =
1√
2

(
1 i
−i 1

)
We can just check whether it is unitary, so whether U†U = I or not.

U†U =
1√
2

(
1 i
−i 1

)
1√
2

(
1 i
−i 1

)
=

(
1 i
−i 1

)
̸= I.

So no, it is not a quantum gate.

Exercise 3.17. Is

U =
1√
2

(
1 i
i −1

)
a quantum gate? If so, what is U |0⟩, and what is U |1⟩?

Exercise 3.18. Is

U =
1√
2

(
1 1
i −i

)
a quantum gate? If so, what is U |0⟩, and what is U |1⟩?

3.3.6 Reversibility

A matrix M is reversible or invertible if there exists a matrix denoted M−1 such that
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M−1M = MM−1 = I.

So, if we multiply a vector by both a matrix and its inverse, nothing happens to the
vector because this is equivalent to multiplying it by the identity matrix.

Now, since a quantum gate U must be unitary, it satisfies

U†U =UU† = I.

Then, the inverse of U is simply U†, i.e., U−1 = U†. So, a quantum gate is always
reversible, and its inverse is its conjugate transpose:

A quantum gate U is always reversible, and its inverse is U†.

If we have a qubit and we applied a quantum gate U , we can undo the gate by
applying U†:

U†U |ψ⟩= I|ψ⟩= |ψ⟩.

Exercise 3.19. Consider the following quantum gate, written as a 2×2 matrix:

U =

(
1+
√

3
2
√

2
+ i 1−

√
3

2
√

6
1−
√

3
2
√

6
+ i 1−

√
3

2
√

6
−1+

√
3

2
√

6
+ i 1−

√
3

2
√

6
1+
√

3
2
√

2
+ i−1+

√
3

2
√

6

)

(a) What is the inverse of U , written as a 2×2 matrix?
(b) A qubit is in the state

|ψ⟩=
√

3
2
|0⟩+ 1

2
|1⟩.

What is U†U |ψ⟩? Hint: You can answer this without any messy calculations.

3.4 Outer Products

3.4.1 Outer Products Are Matrices

Consider two states

|ψ⟩= α|0⟩+β |1⟩, |φ⟩= γ|0⟩+δ |1⟩.

Instead of multiplying |ψ⟩ and |φ⟩ as an inner product ⟨ψ|φ⟩, where the bra is on
the left and the ket is on the right, another way to multiply them is by having the ket
on the left and the bra on the right, which is called an outer product:

|ψ⟩⟨φ |=
(

α

β

)(
γ∗ δ ∗

)
.
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To multiply these vectors according to the rules of linear algebra, we multiply each
row of |ψ⟩ by each column of |φ⟩, resulting in

|ψ⟩⟨φ |=
((

α

β

)
γ∗
(

α

β

)
δ ∗
)
=

((
αγ∗

βγ∗

) (
αδ ∗

βδ ∗

))
=

(
αγ∗ αδ ∗

βγ∗ βδ ∗

)
.

The result is a 2×2 matrix. So, whereas inner products result in scalars, outer prod-
ucts result in matrices, and we can add outer products together to construct various
quantum gates.

For example, consider
U = |1⟩⟨0|+ |0⟩⟨1|.

Let us find how this acts on |ψ⟩ = α|0⟩+β |1⟩ and show that it is a valid quantum
gate.

U |ψ⟩= (|1⟩⟨0|+ |0⟩⟨1|)(α|0⟩+β |1⟩)
= α|1⟩⟨0|0⟩︸︷︷︸

1

+β |1⟩⟨0|1⟩︸︷︷︸
0

+α|0⟩⟨1|0⟩︸︷︷︸
0

+β |0⟩⟨1|1⟩︸︷︷︸
1

= α|1⟩+β |0⟩
= β |0⟩+α|1⟩.

The total probability of this is |β |2 + |α|2 = 1, so this is a valid quantum gate.
Applying U swapped |0⟩ and |1⟩, so it is just the X gate. As another approach, we
can find U as a matrix:

U = |1⟩⟨0|+ |0⟩⟨1|=
(

0
1

)(
1 0
)
+

(
1
0

)(
0 1
)
=

(
0 0
1 0

)
+

(
0 1
0 0

)
=

(
0 1
1 0

)
.

This is precisely the matrix for the X gate. To confirm that it is a valid quantum gate,
we simply show that it is unitary, i.e., if U†U = I:

U†U =

(
0 1
1 0

)(
0 1
1 0

)
=

(
1 0
0 1

)
= I.

The outer product of |φ⟩ and |ψ⟩ is just the conjugate transpose of the outer
product of |ψ⟩ and |φ⟩:

|φ⟩⟨ψ|= |ψ⟩⟨φ |†.

We can prove this through a simple calculation:

|φ⟩⟨ψ|=
(

γ

δ

)(
α∗ β ∗

)
=

(
γα∗ γβ ∗

δα∗ δβ ∗

)
=

(
αγ∗ αδ ∗

βγ∗ βδ ∗

)†

= |ψ⟩⟨φ |†.

In the above equtaion, one may use parenthesis to clarify that the entire outer product
is conjugated and transposed, not just the bra, i.e., |φ⟩⟨ψ|= (|ψ⟩⟨φ |)†.

Exercise 3.20. Consider the following outer product
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|i⟩⟨−|.

(a) What is it as a matrix?
(b) Is this a valid quantum gate?

Exercise 3.21. Consider the following sum of outer products:

1√
2
|0⟩⟨0|+ 1√

2
|0⟩⟨1|+ 1√

2
|1⟩⟨0|− 1√

2
|1⟩⟨1|.

(a) What is it as a matrix?
(b) Is this a valid quantum gate?

3.4.2 Completeness Relation

Recall from Section 3.2.3 that for any orthonormal basis {|a⟩, |b⟩}, the state of a
qubit can be written as

|ψ⟩= α|a⟩+β |b⟩,

where α = ⟨a|ψ⟩ and β = ⟨b|ψ⟩. Substituting these values,

|ψ⟩= ⟨a|ψ⟩︸ ︷︷ ︸
scalar

|a⟩+ ⟨b|ψ⟩︸ ︷︷ ︸
scalar

|b⟩.

As indicated above, the inner products are just scalars/numbers, so instead of multi-
ply them onto the vectors |a⟩ and |b⟩ on the left, we can equivalently multiply them
on the right:

|ψ⟩= |a⟩⟨a|ψ⟩︸ ︷︷ ︸
scalar

+|b⟩⟨b|ψ⟩︸ ︷︷ ︸
scalar

.

Both of these terms are a ket times a bra times a ket. To make this more clear, we
can write them as

|ψ⟩= |a⟩⟨a||ψ⟩+ |b⟩⟨b||ψ⟩.

Now, notice we have two outer products, |a⟩⟨a| and |b⟩⟨b|. Since they are both
multiplying |ψ⟩, we can factor to get

|ψ⟩=
(
|a⟩⟨a|+ |b⟩⟨b|

)
|ψ⟩.

For this to be true for all |ψ⟩, we must have

|a⟩⟨a|+ |b⟩⟨b|= I.

This is called the completeness relation, and it indicates the state of any qubit can be
expressed in terms of |a⟩ and |b⟩, a property we call completeness. We say {|a⟩, |b⟩}
forms a complete orthonormal basis. All the bases we have discussed (any two states
on opposite sides on the Bloch sphere) are complete.

Let us box this:
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A complete orthonormal basis {|a⟩, |b⟩} satisfies the completeness relation

|a⟩⟨a|+ |b⟩⟨b|= I.

Exercise 3.22. Verify that {|+⟩, |−⟩} is a complete orthonormal basis by showing that

|+⟩⟨+|+ |−⟩⟨−|= I.

Exercise 3.23. Verify that {|0⟩, |+⟩} is a not a complete orthonormal basis by showing that

|0⟩⟨0|+ |+⟩⟨+| ̸= I.

3.5 Summary

The mathematical language of quantum computing is linear algebra. Quantum states
are represented by column vectors called kets, and the conjugate transpose of a ket
is a bra. Multiplying a bra and a ket is an inner product that yields the projection or
amplitude of the states onto each other. A state whose inner product with itself is
1 is normalized, and states with zero inner product are orthogonal. Quantum gates
are unitary matrices, which satisfy U†U = I. Unitary matrices are always reversible
with U−1 =U†. Multiplying a ket and a bra is an outer product, which is a matrix.
A complete orthonormal basis satisfies the completeness relation, meaning the sum
of the outer products of each basis vector with itself equals the identity matrix.



Chapter 4
Multiple Quantum Bits

In Chapter 2, we explored the qubit, what happens when it is measured, and how
quantum gates act on it. In Chapter 3, we upgraded our tools for working with a
qubit by introducing linear algebra. Now, we are positioned to explore systems con-
sisting of multiple qubits. Sometimes, these qubits are disjoint, but other times, the
qubits are intertwined together. We will learn how quantum gates acting on multi-
qubit systems can be used to perform computations, namely adding binary numbers.
This same addition problem was explored in Chapter 1 using classical computers,
providing a comparison. Then, we will explore sets of universal quantum gates and
how to correct for errors in quantum computers.

4.1 Entanglion: A Quantum Computing Board Game

4.1.1 Mechanics

IBM Research released an open-source board game called Entanglion to teach the
fundamental ideas and mechanics of quantum computing. It is available at https:
//entanglion.github.io, and anyone can download and print the game board
and pieces. The complete rules are available on the website, but let us summarize
the most important parts here, since they reflect the rules of quantum computing.

Entanglion is a two-player collaborative game, and the goal is to collect, as
a team, eight components to build a quantum computer that are scattered across
different planets, while avoiding detection by the planetary defenses. There are
three galaxies in the Entanglion universe: Centarious, Superious, and Entanglion,
as shown in Fig. 4.1. Centarious has two planets, Zero and One, and Superious also
has two planets, Plus and Minus. On the other hand, Entanglion has eight planets,
each holding one of the components to build a quantum computer.

Each player has one spaceship, and one is red while the other is blue. Players
determine the starting locations of their spaceships by rolling a die that only has 0

137
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Fig. 4.1: The universe for the Entanglion board game. It consists of three galaxies:
Centarious, Superious, and Entanglion. The two players’ spaceships (red and blue)
move across the board from planet to planet according to the labeled paths. Dashed
paths correspond to the red player, and solid paths correspond to the blue player.
Inside the Entanglion galaxy, both spaceships move together.

and 1 as the outcomes. This is called the Centarious die because the outcomes of 0
and 1 correspond to the planets Zero and One, both in the galaxy Centarious.

The players take turns moving their spaceships to different planets by playing en-
gine cards H, X, CNOT, and SWAP. As shown in Fig. 4.1, different engine cards are
used for transitions between different planets. In Centarious and Superious, play-
ers’ spaceships can be on different planets. To move into the Entanglion galaxy, one
player must be in Centarious, and the other player must be in Superious. Then the
player in Centarious uses a CNOT engine card, and both spaceships move to the
same planet in the Entanglion galaxy. This planet is where a horizontal line from
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the Centarious planet intersects with the vertical line from the Superious planet, as
shown by the lines ▷ pppppppppp ◁ in Fig. 4.1. For example, if the red player is at One,
and the blue player is at Plus, and the red player uses a CNOT engine card, then
the red player moves horizontally from One to Psi Plus, and the blue player moves
vertically from Plus to Psi Plus. Inside the Entanglion galaxy, the spaceships always
move together as a pair, so they are always at the same planet.

Anytime the spaceships move to a planet in the Entanglion galaxy, or when a
player attempts to retrieve a component to build a quantum computer, there is a
chance they will be detected by the planetary defenses. The roll of an eight-sized die
determines this, and if the spaceships are detected, both of them move to a random
planet in Centarious determining by rolling the Centarious die.

The game also contains a shuffled deck of event cards, which are played when-
ever the spaceships are detected by planetary defenses, or after six engine cards
have been played. The cards are named after important scientists who contributed to
quantum physics and quantum computing, or after quantum effects. The mechanics
of these cards do not precisely correlate with actual quantum computing, so we limit
our discussion of them here.

Exercise 4.1. Refer to the Entanglion game board in Fig. 4.1.
(a) When can a player use CNOT to move between planets Zero and One?
(b) If the red player is at planet Zero and the blue player is at planet Minus, and the red player

uses a CNOT engine card, where do the players move?
(c) How can the players move between planets Psi Plus and Omega Three?

4.1.2 Connection to Quantum Computing

The rules of Entanglion reflect how quantum computers work. We will explore these
connections in detail throughout this chapter, but here is a quick summary:

• The red and blue spaceships are qubits.
• The planets are various states that qubits can be in. Centarious contains the

classical states |0⟩ and |1⟩, Superious contains the two superposition states |+⟩
and |−⟩, and Entanglion contains eight entangled states, where the states of the
two qubits are intertwined, so the spaceships move together.

• The engine cards H, X, CNOT, and SWAP are quantum gates that are applied to
the qubits. This transforms the qubits to different states, or moves the spaceships
to different planets.

• Detection by planetary defenses corresponds to a measurement. Measuring a
qubit yields a classical 0 or 1 with some probability, so the spaceships move to
planet Zero or One according to a roll of the Centarious die.

Exercise 4.2. Read https://medium.com/qiskit/designing-a-quantum-computi
ng-board-game-de4a450cad8c and answer the following questions:

(a) How many major iterations of the board game were there?
(b) The emphasis of the game was on mastery.

https://medium.com/qiskit/designing-a-quantum-computing-board-game-de4a450cad8c
https://medium.com/qiskit/designing-a-quantum-computing-board-game-de4a450cad8c
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(c) What win rates for AI players corresponded to an adequate level of challenge for human
players?

(d) Entanglion is a play on what word?

4.2 States and Measurement

4.2.1 Tensor Product

When we have multiple qubits, we write their states as a tensor product ⊗. For
example, two qubits, both in the |0⟩ state, are written

|0⟩⊗ |0⟩,

and this is pronounced “zero tensor zero.” Often, we compress the notation and leave
out the tensor product in both writing and speech:

|0⟩|0⟩.

We frequently compress the notation further still:

|00⟩.

With two qubits, the Z-basis is {|00⟩, |01⟩, |10⟩, |11⟩}. A general state is a super-
position of these basis states:

c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩.

If we measure these two qubits in the Z-basis, we get |00⟩ with probability |c0|2,
|01⟩ with probability |c1|2, |10⟩ with probability |c2|2, or |11⟩ with probability |c3|2.
Thus, the total probability is |c0|2 + |c1|2 + |c2|2 + |c3|2, and it should equal 1.

With three qubits, there are eight Z-basis states |000⟩, |001⟩, |010⟩, |011⟩, |100⟩,
|101⟩, |110⟩, and |111⟩. Sometimes, these binary strings are written as decimal num-
bers |0⟩, |1⟩, . . . , |7⟩. Inspired by this, let us call the right qubit the zeroth qubit, the
middle qubit the first qubit, and the left qubit the second qubit, so a Z-basis state
takes the form

|b2b1b0⟩.

Then, the decimal representation of this is

22b2 +21b1 +20b0.

In other words, we label qubits right-to-left, starting with zero. This convention,
where the rightmost qubit is the zeroth qubit, is called little endian. Quirk and many
quantum programming languages, including those in Chapter 5, also use little en-
dian. In contrast, the opposite convention, where the leftmost qubit is the zeroth
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qubit, is called big endian. Of note, Nielsen and Chuang’s standard advanced text-
book uses the big endian convention. Disputes over which convention is “better”
has raged classical computing for decades, and the same debates carry into quantum
computing. The reality is that you should be able to use both, but for consistency,
we use little endian throughout this textbook. Next, the general state of three qubits
is a superposition of these basis vectors:

7

∑
j=0

c j| j⟩= c0|0⟩+ c1|1⟩+ · · ·+ c7|7⟩,

and the probability of getting | j⟩when measuring in the Z-basis is |c j|2, so ∑ j |c j|2 =
1.

With n qubits, there are N = 2n Z-basis states, which we can label as n-bit strings
or by the decimal numbers 0 through N−1. As an n-bit string,

|bN−1 . . .b1b0⟩=
∣∣2N−1bN−1 + · · ·+21b1 +20b0

〉
.

Of course, the general state of n-qubits is a superposition of these Z-basis states:

N−1

∑
j=0

c j| j⟩= c0|0⟩+ c1|1⟩+ · · ·+ cN−1|N−1⟩.

This has N amplitudes c0 through cN−1. Thus, if we have just n = 300 qubits, then
we must keep track of N = 2300 ≈ 2.04× 1090 amplitudes, which is more than the
number of atoms in the visible universe (1078 to 1082). This is evidence, but not a
proof, that it is difficult for classical computers to simulate quantum computers. It
is evidence because classical computers cannot keep track of this many amplitudes,
but it is not a proof because it is unknown whether quantum computers need all these
amplitudes. That is, if quantum computers can function with much fewer amplitudes
(a polynomial number instead of an exponential number in n), a classical computer
would be able to keep track of all of them. In terms of complexity classes, the
exponential number of amplitudes in a general entangled state is evidence that P ̸=
BQP.

We can also use powers to simplify the notation. If we have n qubits, each in the
state |0⟩, we can write the state as

|0⟩⊗n = |0⟩⊗ |0⟩⊗ · · ·⊗ |0⟩︸ ︷︷ ︸
n

= |0⟩|0⟩ . . . |0⟩︸ ︷︷ ︸
n

= |00 . . .0︸ ︷︷ ︸
n

⟩= |0n⟩.

With a single qubit, we could parameterize a state as

cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩,

with the coordinates (θ ,φ) interpreted as a point on the Bloch sphere. With two
qubits, however, we have four complex amplitudes c0, c1, c2, c3 (although one can
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be made real by factoring out an global phase), and unfortunately, this is too many
parameters to represent in three-dimensions. There is no Bloch sphere representa-
tion for a general multi-qubit state.

The tensor product also works for bras, so

⟨0|⊗ ⟨0|= ⟨0|⟨0|= ⟨00|.

Then, the inner product of, say ⟨01| and |00⟩, is obtained by matching up qubits. For
example,

⟨01|00⟩= ⟨0|0⟩︸︷︷︸
1

· ⟨1|0⟩︸︷︷︸
0

= 0.

So |01⟩ and |00⟩ are orthogonal.

Exercise 4.3. Calculate the following inner products:
(a) ⟨10|11⟩.
(b) ⟨+−|01⟩.
(c) ⟨1+0|1−0⟩.

4.2.2 Kronecker Product

In linear algebra, the tensor product is simply the Kronecker product, which is ob-
tained by multiplying each term of the first matrix/vector by the entire second ma-
trix/vector. For example, with two qubits,

|00⟩= |0⟩|0⟩= |0⟩⊗ |0⟩=
(

1
0

)
⊗
(

1
0

)
=

1
(

1
0

)
0
(

1
0

)
=


1
0
0
0

 .

|01⟩= |0⟩|1⟩= |0⟩⊗ |1⟩=
(

1
0

)
⊗
(

0
1

)
=

1
(

0
1

)
0
(

0
1

)
=


0
1
0
0

 .

|10⟩= |1⟩|0⟩= |1⟩⊗ |0⟩=
(

0
1

)
⊗
(

1
0

)
=

0
(

1
0

)
1
(

1
0

)
=


0
0
1
0

 .

|11⟩= |1⟩|1⟩= |1⟩⊗ |1⟩=
(

0
1

)
⊗
(

0
1

)
=

0
(

0
1

)
1
(

0
1

)
=


0
0
0
1

 .

Then,
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c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩=


c0
c1
c2
c3

 .

Similarly, with three qubits, its state can be written as a column vector with eight
elements:

7

∑
j=0

c j| j⟩= c0|0⟩+ c1|1⟩+ · · ·+ c7|7⟩=


c0
c1
...

c7

 .

With n qubits, the vector has N = 2n elements:

|ψ⟩=
N−1

∑
j=0

c j| j⟩= c0|0⟩+ c1|1⟩+ · · ·+ cN−1|N−1⟩=


c0
c1
...

cN−1

 .

With bras, the Kronecker product is still the tensor product. For example,

⟨00|= ⟨0|⊗ ⟨0|=
(
1 0
)
⊗
(
1 0
)
=
(
1
(
1 0
)

0
(
1 0
))

=
(
1 0 0 0

)
.

So, a general quantum state of n qubits, written as a bra, is

⟨ψ|=
N−1

∑
j=0

c∗j⟨ j|= c∗0⟨0|+ c∗1⟨1|+ · · ·+ c∗N−1⟨N−1|=
(
c∗0 c∗1 · · · c∗N−1

)
.

Exercise 4.4. Verify that

|1⟩⊗ |1⟩⊗ |0⟩=



0
0
0
0
0
0
1
0


.

Exercise 4.5. Consider a two-qubit state

|ψ⟩= 1
2
|00⟩+ i√

2
|10⟩+

√
3+ i
4
|11⟩.

(a) What is |ψ⟩ as a (column) vector?
(a) What is ⟨ψ| as a (row) vector?

Exercise 4.6. Show that {|00⟩, |01⟩, |10⟩, |11⟩} is a complete orthonormal basis for the state of two
qubits by showing that it satisfies the completeness relation

|00⟩⟨00|+ |01⟩⟨01|+ |10⟩⟨10|+ |11⟩⟨11|= I,
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where I is the 4×4 identity matrix:

I =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

4.2.3 Measuring Individual Qubits

Say we have two qubits in the state

1√
2
|00⟩+ 1

2
|01⟩+

√
3

4
|10⟩+ 1

4
|11⟩.

If we measure both qubits, we would get |00⟩ with probability 1/2, |01⟩ with prob-
ability 1/4, |10⟩ with probability 3/16, or |11⟩ with probability 1/16.

Now, instead of measuring both qubits, let us only measure the left qubit. This
yields |0⟩ or |1⟩ with some probabilities, and the state collapses to some state, so the
outcomes are

|0⟩ with some probability, and the state collapses to something,
|1⟩ with some probability, and the state collapses to something.

The probability of getting |0⟩ when measuring the left qubit is given by the sum of
the norm-squares of the amplitudes of |00⟩ and |01⟩, since those both have the left
qubit as |0⟩. That is, the probability of getting |0⟩ is∣∣∣∣ 1√

2

∣∣∣∣2 + ∣∣∣∣12
∣∣∣∣2 = 3

4
.

Similarly, if the outcome is |1⟩, then from the |10⟩ and |11⟩ states, the probability is∣∣∣∣∣
√

3
4

∣∣∣∣∣
2

+

∣∣∣∣14
∣∣∣∣2 = 1

4
.

Then, the results of the measurement are:

|0⟩ with probability
3
4
, and the state collapses to something,

|1⟩ with probability
1
4
, and the state collapses to something.

Now for the states after measurement, if the outcome is |0⟩, then the state collapses
to the parts where the left qubit is |0⟩, so it becomes
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A
(

1√
2
|00⟩+ 1

2
|01⟩

)
,

where A is a normalization constant. Similarly, if the outcome is |1⟩, then the state
collapses to the terms where the left qubit is |1⟩, so it becomes

B

(√
3

4
|10⟩+ 1

4
|11⟩

)
.

where B is a normalization constant. Normalizing these, we get A = 2/
√

3 and B =
2, so measuring the left qubit yields

|0⟩ with probability
3
4
, and the state collapses to

√
2
3
|00⟩+ 1√

3
|01⟩,

|1⟩ with probability
1
4
, and the state collapses to

√
3

2
|10⟩+ 1

2
|11⟩.

We can apply these ideas to any number of qubits. For example, if we have three
qubits in the state

c0|000⟩+ c1|001⟩+ c2|010⟩+ c3|011⟩+ c4|100⟩+ c5|101⟩+ c6|110⟩+ c7|111⟩,

and we measure the left and middle qubits, the possible outcomes are

|00⟩ with probability |c0|2 + |c1|2, collapses to
c0|000⟩+ c1|001⟩√
|c0|2 + |c1|2

,

|01⟩ with probability |c2|2 + |c3|2, collapses to
c2|010⟩+ c3|011⟩√
|c2|2 + |c3|2

,

|10⟩ with probability |c4|2 + |c5|2, collapses to
c4|100⟩+ c5|101⟩√
|c4|2 + |c5|2

,

|11⟩ with probability |c6|2 + |c7|2, collapses to
c6|110⟩+ c7|111⟩√
|c6|2 + |c7|2

.

Exercise 4.7. Two qubits are in the state

i√
10
|00⟩+ 1−2i√

10
|01⟩+ eiπ/100

√
10
|10⟩+

√
3√
10
|11⟩.

If we measure the qubits in the Z-basis {|00⟩, |01⟩, |10⟩, |11⟩}, what are the possible outcomes and
with what probabilities?

Exercise 4.8. Normalize the following quantum state:

A
(

1
2
|00⟩+ i|01⟩+

√
2|10⟩− |11⟩

)
.
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4.2.4 Sequential Single-Qubit Measurements

We have answered the question of what happens when we measure just a single qubit
or a subset of qubits. Now, let us take this a step further and consider what happens
if we measure the qubits, one after another. For example, in the last section, we
started with two qubits in the state

1√
2
|00⟩+ 1

2
|01⟩+

√
3

4
|10⟩+ 1

4
|11⟩.

If we first measure the left qubit, we get

|0⟩ with probability
3
4
, and the state collapses to

√
2
3
|00⟩+ 1√

3
|01⟩,

|1⟩ with probability
1
4
, and the state collapses to

√
3

2
|10⟩+ 1

2
|11⟩.

Now if we measure the right qubit after this, the possible outcomes for the sequence
of measurements are |00⟩, |01⟩, |10⟩, and |11⟩. The probability of getting |00⟩ is the
probability of first getting |0⟩ for the left qubit, which was 3/4, times the probability
of getting |0⟩ for the right qubit, which is 2/3 because the state collapsed after the
first measurement. Multiplying these, the probability of getting |00⟩ is (3/4)(2/3) =
2/4 = 1/2. We can perform this calculation for every possible outcome:

Prob(|00⟩) = Prob(first left |0⟩)Prob(then right |0⟩) = 3
4

2
3
=

1
2
,

Prob(|01⟩) = Prob(first left |0⟩)Prob(then right |1⟩) = 3
4

1
3
=

1
4
,

Prob(|10⟩) = Prob(first left |1⟩)Prob(then right |0⟩) = 1
4

3
4
=

3
16

,

Prob(|11⟩) = Prob(first left |1⟩)Prob(then right |1⟩) = 1
4

1
4
=

1
16

.

Notice these outcomes and probabilities are exactly the same as if we had measured
both qubits at the same time, as they should be. Measuring both qubits is the same
as measuring one after another, assuming the state was not modified between the
two measurements.

Exercise 4.9. Consider the two-qubit state

1
4
|00⟩+ 1

2
|01⟩+ 1√

2
|10⟩+

√
3

4
|11⟩.

If you measure only the left qubit, what are the resulting states, and with what probabilities?

Exercise 4.10. Consider the three-qubit state

1
6
|000⟩+ 1

3
√

2
|001⟩+ 1√

6
|010⟩+ 1

2
|011⟩+ 1

6
|100⟩+ 1

3
|101⟩+ 1

6
|110⟩+ 1√

3
|111⟩.
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If you measure only the left and right qubits, but not the middle qubit, what are the resulting states,
and with what probabilities?

4.3 Entanglement

4.3.1 Product States

Some quantum states can be factored into (the tensor product of) individual qubit
states. For example,

1
2
(|00⟩− |01⟩+ |10⟩− |11⟩) = 1√

2
(|0⟩+ |1⟩)︸ ︷︷ ︸
|+⟩

⊗ 1√
2
(|0⟩− |1⟩)︸ ︷︷ ︸
|−⟩

= |+⟩⊗ |−⟩
= |+⟩|−⟩.

To confirm this to yourself, work it out in reverse order by multiplying out the states
and showing that you get the original state. Such factorizable states are called prod-
uct states or simply separable states. Each single-qubit state can be visualized on
the Bloch sphere, so |+⟩|−⟩ would be two Bloch spheres, with the first at the x-axis,
and the other at the −x-axis:

x
y

z

x
y

z

Let us work through an example of how to factor a state. Say two qubits are in
the state

1
2
√

2

(√
3|00⟩−

√
3|01⟩+ |10⟩− |11⟩

)
.

We want to write this as the product of two single-qubit states,

|ψ1⟩|ψ0⟩,

where
|ψ1⟩= α1|0⟩+β1|1⟩, |ψ0⟩= α0|0⟩+β0|1⟩.

Then,



148 4 Multiple Quantum Bits

|ψ1⟩|ψ0⟩= (α1|0⟩+β1|1⟩)(α0|0⟩+β0|1⟩)
= α1α0|00⟩+α1β0|01⟩+β1α0|10⟩+β1β0|11⟩.

Matching up the coefficients with our original state,

α1α0 =

√
3

2
√

2
, α1β0 =

−
√

3
2
√

2
, β1α0 =

1
2
√

2
, β1β0 =

−1
2
√

2
.

Using these equations, let us solve for the variables in terms of one of them. Starting
with the first equation, we can solve for α1 in terms of α0:

α1 =

√
3

2
√

2α0
.

Plugging this into the second equation, we can solve for β0 in terms of α0:

β0 =−α0.

For the third equation, we can solve for β1 in terms of α0:

β1 =
1

2
√

2α0
.

Finally, plugging in β1 = 1/2
√

2α0 and β0 =−α0 into the fourth equation, we get

−1
2
√

2
=
−1

2
√

2
,

which is a true statement, so it is satisfied, although it does not tell us anything new.
So, we have solved for α1, β1, and β0 in terms of α0, and this is actually sufficient.
Plugging into the product state,

|ψ1⟩|ψ0⟩= (α1|0⟩+β1|1⟩)(α0|0⟩+β0|1⟩)

=

( √
3

2
√

2α0
|0⟩+ 1

2
√

2
1

α0
|1⟩
)
(α0|0⟩−α0|1⟩) .

We see that α0 cancels, yielding

|ψ1⟩|ψ0⟩=

( √
3

2
√

2
|0⟩+ 1

2
√

2
|1⟩
)
(|0⟩− |1⟩) .

Moving the factor of 1/
√

2 to the right qubit so that both qubits are normalized,

|ψ1⟩|ψ0⟩=

(√
3

2
|0⟩+ 1

2
|1⟩
)(

1√
2
|0⟩− 1√

2
|1⟩
)
.
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Thus, the left qubit is in the state
√

3
2 |0⟩+

1
2 |1⟩, and the right qubit is in the state |−⟩.

In general, a product state of n qubits can be written

(αn−1|0⟩+βn−1|1⟩)⊗·· ·⊗ (α1|0⟩+β1|1⟩)⊗ (α0|0⟩+β0|1⟩) .

This only has 2n amplitudes, so a classical computer can efficiently store the ampli-
tudes of product states. If quantum computers only used product states, they would
be efficiently simulated by classical computers.

4.3.2 Entangled States

There exist quantum states that cannot be factored into product states. These are
called entangled states. For example, with two qubits,∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩)

cannot be written as |ψ1⟩|ψ0⟩. As a proof, let us try writing it as a product state
using the procedure from the last section:

|ψ1⟩|ψ0⟩= (α1|0⟩+β1|1⟩)(α0|0⟩+β0|1⟩)
= α1α0|00⟩+α1β0|01⟩+β1α0|10⟩+β1β0|11⟩.

Matching the coefficients, we get

α1α0 =
1√
2
, α1β0 = 0, β1α0 = 0, β1β0 =

1√
2
.

The second equation requires α1 = 0 or β0 = 0. If α1 = 0, then the first equation
gives 0 = 1/

√
2, which is false. If β0 = 0, then the fourth equation gives 0 = 1/

√
2.

Thus, there is no solution to these four equations, so |Φ+⟩ cannot be written as a
product state. It is an entangled state. This property that the state of the qubits are
intertwined is called entanglement.

Since an entangled state cannot be factored, a general entangled state of n qubits
would have N = 2n amplitudes c0 through cN−1:

|ψ⟩=
N−1

∑
j=0

c j| j⟩= c0|0⟩+ c1|1⟩+ · · ·+ cN−1|N−1⟩=


c0
c1
...

cN−1

 .

In the Entanglion board game, the planets within the Entanglion galaxy corre-
spond to two-qubit states that are entangled. Planet Phi Plus is precisely |Φ+⟩.

We will discuss entanglement in more detail in Chapter 6.
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Exercise 4.11. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1√
2
(|01⟩+ |10⟩).

(b)
1√
2
(|10⟩+ i|11⟩).

Exercise 4.12. Are each of the following states a product state or entangled state? If it is a product
state, give the factorization.

(a)
1
4

(
3|00⟩−

√
3|01⟩+

√
3|10⟩− |11⟩

)
.

(b)
1√
3
|0⟩|+⟩+

√
2
3
|1⟩|−⟩.

4.4 Quantum Gates

4.4.1 One-Qubit Quantum Gates

Say we have multiple qubits, and we want to apply a single-qubit gate (like I, X ,
Y , Z, S, T , or H) to just a single qubit. For example, say we have two qubits in the
|00⟩ = |0⟩⊗ |0⟩ state, and we want to apply the Hadamard gate to the left qubit,
but leave the right qubit alone (i.e., apply the identity gate to it). We write the gates
using a tensor product, so we write

(H⊗ I)(|0⟩⊗ |0⟩) = H|0⟩⊗ I|0⟩
= |+⟩⊗ |0⟩

=
1√
2
(|0⟩+ |1⟩)⊗|0⟩

=
1√
2
(|0⟩⊗ |0⟩+ |1⟩⊗ |0⟩) .

Compressing the notation and also writing the result as a column vector,

(H⊗ I)|00⟩= 1√
2
(|00⟩+ |10⟩) = 1√

2


1
0
1
0

 .

To draw as a quantum circuit, we use the convention that the rightmost qubit corre-
sponds to the top row of the quantum circuit, and the leftmost qubit corresponds to
the bottom row of the quantum circuit:

|0〉 I

|0〉 H
or

|0〉
|0〉 H
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We follow this convention so that it matches Quirk, and in Chapter 5 the IBM Quan-
tum Composer. Nielsen and Chuang follows the opposite convention, where the
leftmost qubit corresponds to the top row of the quantum circuit.

We can find H ⊗ I as a matrix a couple different ways. First, we can find how
H⊗ I acts on each of the basis states |00⟩, |01⟩, |10⟩, |11⟩. We already found how it
acts on |00⟩ above. Continuing with the rest,

(H⊗ I)|01⟩= 1√
2
(|01⟩+ |11⟩) = 1√

2


0
1
0
1

 ,

(H⊗ I)|10⟩= 1√
2
(|00⟩− |10⟩) = 1√

2


1
0
−1
0

 ,

(H⊗ I)|11⟩= 1√
2
(|01⟩− |11⟩) = 1√

2


0
1
0
−1

 .

As in Section 3.3.1, we can write H⊗I as a matrix by combining the column vectors
for (H⊗ I)|00⟩, . . . ,(H⊗ I)|11⟩ as a 4×4 grid:

H⊗ I =
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

The second way to find this matrix is by taking the Kronecker product of H and I:

H⊗ I =
1√
2

(
1 1
1 −1

)
⊗
(

1 0
0 1

)
=

1√
2

1 ·
(

1 0
0 1

)
1 ·
(

1 0
0 1

)
1 ·
(

1 0
0 1

)
−1 ·

(
1 0
0 1

)


=
1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 .

This matches what we previously obtained. We can also find the Kronecker product
using Mathematica or SageMath:

• In Mathematica,

H=1/Sqrt[2]*{{1,1},{1,-1}};
eye={{1,0},{0,1}};
KroneckerProduct[H,eye]
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• In SageMath,

sage: H = 1/sqrt(2) * Matrix([[1,1],[1,-1]])
sage: eye = Matrix([[1,0],[0,1]])
sage: H.tensor_product(eye)

As another example, to act on the left qubit with H and the right qubit with X ,
we would write H⊗X , so

(H⊗X)|0⟩|0⟩= |+⟩|1⟩= 1√
2
(|01⟩+ |11⟩) .

As a quantum circuit, we would draw this as

|0〉 X

|0〉 H

Simulating this in Quirk, we get

This is consistent with the state |+⟩|1⟩. Since the right/top qubit is |1⟩, Quirk cor-
rectly shows that the probability of getting |1⟩ when measuring it is 100% (On),
and it correctly draws the state at the south pole of the Bloch sphere. Similarly, the
left/bottom qubit is |+⟩, and Quirk correctly shows that the probability of measuring
it to be |1⟩ is 50%, and it correctly draws the state at the x-axis of the Bloch sphere.
In additional, Quirk also depicts the amplitudes on the real-imaginary plane, labeled
“Final amplitudes.” There are four boxes, and the top-left box depicts the amplitude
of |00⟩, which is zero, and the top-right box depicts the amplitude of |01⟩, which is
1/
√

2. Since this is real, it corresponds to a vector pointing along the real axis of the
real-imaginary plane. The background is also half filled, indicating a probability of
|1/
√

2|2 = 1/2. Mousing over, we get

and the amplitude is also explicitly given as 0.70711 = 1/
√

2, which has a phase
or angle of 0◦ on the real-imaginary plane since it is purely real, and a norm-square
magnitude of 50%. The bottom-left box depicts the amplitude of |10⟩, which is zero,
and finally the bottom-right box depicts the amplitude of |11⟩, which is 1/

√
2.
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As a third example, if we have n qubits, and we want to apply H to all n qubits,
we can write H⊗H⊗·· ·⊗H as H⊗n. For example,

H⊗n|0⟩⊗n = |+⟩⊗n.

Note one-qubit gates are unable to create entangled states because each qubit
evolves independently of the others. To create entanglement, we need quantum gates
that operate on multiple qubits at a time.

Exercise 4.13. In this problem, you will prove some of the game mechanics of Entanglion. Please
refer to Fig. 4.1 for the game board. If the players are on planet Psi Plus, and either player uses an
X engine card, they both move to planet Phi Plus, and vice versa. Similarly, if the players are on
planet Psi Minus, and either player uses an X engine card, they both move to planet Phi Minus,
and vice versa. These planets correspond to the following states:∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩) ,

∣∣Φ−〉= 1√
2
(|00⟩− |11⟩) ,

∣∣Ψ+
〉
=

1√
2
(|01⟩+ |10⟩) ,

∣∣Ψ−〉= 1√
2
(|01⟩− |10⟩) .

(a) Show that when the X gate is applied to either qubit of |Ψ+⟩, the result is |Φ+⟩, up to a global
phase.

(b) Show that when the X gate is applied to either qubit of |Φ+⟩, the result is |Ψ+⟩, up to a global
phase.

(c) Show that when the X gate is applied to either qubit of |Ψ−⟩, the result is |Φ−⟩, up to a global
phase.

(d) Show that when the X gate is applied to either qubit of |Φ−⟩, the result is |Ψ−⟩, up to a global
phase.

Exercise 4.14. Answer the following questions.
(a) What is H⊗X as a 4×4 matrix?
(b) Consider

|ψ⟩= 1
4
|00⟩+ 1

2
|01⟩+ 1√

2
|10⟩+

√
3

4
|11⟩.

What is (H⊗X)|ψ⟩? Hint: You may use a computer.

4.4.2 Two-Qubit Quantum Gates

Quantum gates can also operate on two qubits at the same time. Some important
examples include:

• The CNOT gate or controlled-NOT gate inverts the right qubit if the left qubit
is 1:
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CNOT|00⟩= |00⟩,
CNOT|01⟩= |01⟩,
CNOT|10⟩= |11⟩,
CNOT|11⟩= |10⟩.

The left qubit is called the control qubit, and the right qubit is called the target
qubit. Note the control qubit is unchanged by CNOT, whereas the target qubit
becomes the XOR (exclusive OR) of the inputs:

CNOT|a⟩|b⟩= |a⟩|a⊕b⟩.

Thus, CNOT is a quantum XOR gate. Also, since the X gate is the NOT gate,
the CNOT gate is also called the CX gate or controlled-X gate.
In Entanglion (see Fig. 4.1), the player who uses the CNOT engine card is the
target qubit, and the other player is the control qubit. So, you can move between
planets Zero and One by playing a CNOT engine card when the other player is
at One.
Acting on a superposition,

CNOT(c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩)
= c0CNOT|00⟩+ c1CNOT|01⟩+ c2CNOT|10⟩+ c3CNOT|11⟩
= c0|00⟩+ c1|01⟩+ c2|11⟩+ c3|10⟩
= c0|00⟩+ c1|01⟩+ c3|10⟩+ c2|11⟩.

So, the amplitudes of |10⟩ and |11⟩ are swapped.
As a matrix, the columns correspond to CNOT acting on |00⟩, |01⟩, |10⟩, and
|11⟩:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

For example, acting on a general superposition,

CNOT(c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




c0
c1
c2
c3

=


c0
c1
c3
c2

 .

So, the amplitudes of |10⟩ and |11⟩ are swapped, as expected.
As a quantum circuit, CNOT spans two qubits or two lines:

•
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The solid dot indicates control, and the ⊕ denotes the target, which is the XOR
of the control and the target. Simulating this in Quirk, we drag an X gate onto the
top line and a “Control” solid dot, which is in the top Toolbox under “Probes,”
onto the bottom line:

We also clicked on the initial state of the control qubit to change it to |1⟩ (alter-
natively, we could leave the initial state as |0⟩ and apply X to it, resulting in |1⟩).
This triggers the CNOT, changing the target from |0⟩ to |1⟩. The result is that
both qubits are “On” with 100% probability. They are both at the south poles of
their Bloch spheres, and the amplitude of |11⟩ is 1.
To further clarify the control and target qubits, we may write CNOT with sub-
scripts:

CNOTi j = CNOT with qubit i as the control and qubit j as the target.

Since we label the qubits from right-to-left starting with 0, we have been using

CNOT = CNOT10.

If we instead want the control and target to be flipped, it would be CNOT01, and
we would draw the circuit as

•

To simulate this in Quirk, we just put the control on the zeroth qubit and the X
gate on the first qubit:

We set the control qubit to |1⟩, and so the CNOT gate flipped the target to |1⟩.
Another way to flip the control and target qubits is to apply Hadamard gates to
both sides of the CNOT:

H H
=

•

H • H

In other words,
(H⊗H)CNOT(H⊗H) = CNOT01
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We can prove this circuit identity using either elementary algebra or linear alge-
bra. First, using elementary algebra, the right-hand-side of equation yields the
following when applied to a superposition of the Z-basis states:

CNOT01 (c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩)
= c0|00⟩+ c1|11⟩+ c2|10⟩+ c3|01⟩
= (c0|00⟩+ c3|01⟩+ c2|10⟩+ c1|11⟩) .

Let us show that the left-hand-side yields the same state:

c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩
H⊗H−−−→ c0|++⟩+ c1|+−⟩+ c2|−+⟩+ c3|−−⟩

=
c0

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)+ c1

2
(|00⟩− |01⟩+ |10⟩− |11⟩)

+
c2

2
(|00⟩+ |01⟩− |10⟩− |11⟩)+ c3

2
(|00⟩− |01⟩− |10⟩+ |11⟩)

=
1
2
(c0 + c1 + c2 + c3) |00⟩+ 1

2
(c0− c1 + c2− c3) |01⟩

+
1
2
(c0 + c1− c2− c3) |10⟩+ 1

2
(c0− c1− c2 + c3) |11⟩

CNOT−−−→ 1
2
(c0 + c1 + c2 + c3) |00⟩+ 1

2
(c0− c1 + c2− c3) |01⟩

+
1
2
(c0 + c1− c2− c3) |11⟩+ 1

2
(c0− c1− c2 + c3) |10⟩

=
1
2
(c0 + c1 + c2 + c3) |00⟩+ 1

2
(c0− c1 + c2− c3) |01⟩

+
1
2
(c0− c1− c2 + c3) |10⟩+ 1

2
(c0 + c1− c2− c3) |11⟩

H⊗H−−−→ 1
4
(c0 + c1 + c2 + c3) |++⟩+ 1

4
(c0− c1 + c2− c3) |+−⟩

+
1
4
(c0− c1− c2 + c3) |−+⟩+

1
4
(c0 + c1− c2− c3) |−−⟩

=
1
4
(c0 + c1 + c2 + c3)(|00⟩+ |01⟩+ |10⟩+ |11⟩)

+
1
4
(c0− c1 + c2− c3)(|00⟩− |01⟩+ |10⟩− |11⟩)

+
1
4
(c0− c1− c2 + c3)(|00⟩+ |01⟩− |10⟩− |11⟩)

+
1
4
(c0 + c1− c2− c3)(|00⟩− |01⟩− |10⟩+ |11⟩)

= c0|00⟩+ c3|01⟩+ c2|10⟩+ c1|11⟩.

This is the same state, and so we have proved the circuit identity. It was rather
tedious, however. Proving the circuit identity using linear algebra is easier. First,
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note that

CNOT01 =


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 ,

since its columns show that |00⟩ stays |00⟩, |01⟩ becomes |11⟩, |10⟩ stays |10⟩,
and |11⟩ becomes |01⟩. Now, let us show that (H ⊗H)CNOT(H ⊗H) corre-
sponds to the same matrix. First,

H⊗H =
1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

)
=

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

Then,

(H⊗H)CNOT(H⊗H)

=
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



=
1
4


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1



=
1
4


4 0 0 0
0 0 0 4
0 0 4 0
0 4 0 0



=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

This is precisely CNOT01, and so we have proved the circuit identity using
linear algebra. We also could have computed it using Mathematica or SageMath.
Simulating the identity in Quirk,
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Since the top qubit is initially |1⟩, and it is now the control qubit, the bottom
qubit gets flipped to |1⟩. So, both qubits are “On.”
The CNOT gate is important because it can produce entanglement. For example,

CNOT|+⟩|0⟩= CNOT
1√
2
(|00⟩+ |10⟩) = 1√

2
(|00⟩+ |11⟩) =

∣∣Φ+
〉
,

CNOT|−⟩|0⟩= CNOT
1√
2
(|00⟩− |10⟩) = 1√

2
(|00⟩− |11⟩) =

∣∣Φ−〉,
CNOT|+⟩|1⟩= CNOT

1√
2
(|01⟩+ |11⟩) = 1√

2
(|01⟩+ |10⟩) =

∣∣Ψ+
〉
,

CNOT|−⟩|1⟩= CNOT
1√
2
(|01⟩− |11⟩) = 1√

2
(|01⟩− |10⟩) =

∣∣Ψ−〉.
In Section 4.3.2, we proved that |Φ+⟩ is entangled. It can be shown that the
other three states, |Φ−⟩, |Ψ+⟩, and |Ψ−⟩, are also entangled. So, in each of the
above four calculations, we started with product states and ended up with en-
tangled states. This demonstrates that CNOT can create entanglement. The four
states, |Φ+⟩, |Φ−⟩, |Ψ+⟩, and |Ψ−⟩, are known as the Bell states or EPR states
or EPR pairs (for Einstein, Podolsky, and Rosen). They form an orthonormal
basis called the Bell basis (see Exercise 4.19), and they will be important in
Chapter 6.
In Entanglion (see Fig. 4.1), the player who uses the CNOT engine card is the
target qubit, and the other player is the control qubit. So, playing a CNOT engine
card while at planet Zero, while your teammate is at planet Plus, causes both of
you to move to planet Phi Plus. Similarly, the spaceships go from planets Zero
and Minus to Phi Minus, One and Plus to Psi Plus, and One and Minus to Psi
Minus.

Exercise 4.15. Prove the following circuit identities, such as by finding the matrix representation
of each circuit.

(a) CNOT(X⊗ I) = (X⊗X)CNOT.

=
X

X • • X

(b) CNOT(I⊗X) = (I⊗X)CNOT.

X
=

X

• •
(c) CNOT(Z⊗ I) = (Z⊗ I)CNOT.

=
Z • • Z

(d) CNOT(I⊗Z) = (Z⊗Z)CNOT.
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Z
=

Z

• • Z

Exercise 4.16. Consider the following circuit, which consists of two CNOTs.

A • A′

B • B′

C C ′

(a) What is the truth table for this circuit?
(b) How does it compare to the reversible circuit for XOR in Exercise 1.43?

Exercise 4.17. Recall CNOT flips the right qubit if the left qubit is 1. The anti-controlled-NOT
gate flips the right qubit if the left qubit is 0. As a quantum circuit, the anti-control is drawn as an
open dot instead of a solid dot. Prove that it can be obtained from an ordinary CNOT by applying
an X gate to each side of the control:

=
X • X

Exercise 4.18. If we apply CNOT in the Z-basis {|00⟩, |01⟩, |10⟩, |11⟩}, the left qubit acts as the
control and the right qubit acts as the target. In this problem, we will prove that in the X-basis
{|++⟩, |+−⟩, |−+⟩, |−−⟩, if the right qubit is |−⟩, the left qubit gets flipped between |+⟩ and |−⟩,
so the control and target are reversed. That is,

CNOT|+⟩|+⟩= |+⟩|+⟩,
CNOT|+⟩|−⟩= |−⟩|−⟩,
CNOT|−⟩|+⟩= |−⟩|+⟩,
CNOT|−⟩|−⟩= |+⟩|−⟩.

To prove these four equations, we start with the circuit identity from the main text:

(H⊗H)CNOT(H⊗H) = CNOT01.

Then, we multiply on the left and on the right by H⊗H:

(H⊗H)(H⊗H)CNOT(H⊗H)(H⊗H) = (H⊗H)CNOT01(H⊗H).

Since H2 = I, this becomes

(I⊗ I)CNOT(I⊗ I) = (H⊗H)CNOT01(H⊗H).

Dropping the identity matrices,

CNOT = (H⊗H)CNOT01(H⊗H).

Now it is straightforward to prove how CNOT acts in the X-basis. Beginning with |++⟩,

CNOT|+⟩|+⟩= (H⊗H)CNOT01(H⊗H)|+⟩|+⟩
= (H⊗H)CNOT01|0⟩|0⟩
= (H⊗H)|0⟩|0⟩
= |+⟩|+⟩.

Work out how CNOT acts on the remaining three basis states |+−⟩, |−+⟩, and |−−⟩.
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Exercise 4.19. Prove that the Bell basis satisfies the completeness relation:∣∣Φ+
〉〈

Φ
+
∣∣+ ∣∣Φ−〉〈Φ−∣∣+ ∣∣Ψ+

〉〈
Ψ

+
∣∣+ ∣∣Ψ−〉〈Ψ−∣∣= I,

where I is the 4×4 identity matrix.

• Just like CNOT, the controlled-U gate applies some quantum gate U to the right
qubit if the left qubit is 1:

CU |00⟩= |00⟩,
CU |01⟩= |01⟩,
CU |10⟩= |1⟩⊗U |0⟩,
CU |11⟩= |1⟩⊗U |1⟩.

To get the matrix representation of CU , first say U acts on a single qubit as

U |0⟩= a|0⟩+b|1⟩,
U |1⟩= c|0⟩+d|1⟩.

So, U as a 2×2 matrix is

U =

(
a c
b d

)
.

Then,

CU |00⟩= |00⟩,
CU |01⟩= |01⟩,
CU |10⟩= |1⟩⊗ (a|0⟩+b|1⟩) = a|10⟩+b|11⟩,
CU |11⟩= |1⟩⊗ (c|0⟩+d|1⟩) = c|10⟩+d|11⟩.

Representing each of these as column vectors and putting them together, CU as
a 4×4 matrix is

CU =


1 0 0 0
0 1 0 0
0 0 a c
0 0 b d

 .

This agrees with

CNOT = CX =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Some examples are controlled-Z and controlled-phase:

Z

•

S

•
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Exercise 4.20. What is the controlled-Z gate as a matrix?

• The SWAP gate simply swaps the two qubits:

SWAP|00⟩= |00⟩,
SWAP|01⟩= |10⟩,
SWAP|10⟩= |01⟩,
SWAP|11⟩= |11⟩.

In other words,
SWAP|a⟩|b⟩= |b⟩|a⟩.

This gate cannot produce entanglement because, if the qubits are in a product
state, swapping the factors results in a product state. Acting on a superposition,

SWAP(c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩)
= c0SWAP|00⟩+ c1SWAP|01⟩+ c2SWAP|10⟩+ c3SWAP|11⟩
= c0|00⟩+ c1|10⟩+ c2|01⟩+ c3|11⟩
= c0|00⟩+ c2|01⟩+ c1|10⟩+ c3|11⟩.

So, the amplitudes of |01⟩ and |10⟩ are swapped.
As a matrix, the columns correspond to SWAP acting on |00⟩, |01⟩, |10⟩, and
|11⟩:

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

For example, acting on a general superposition,

SWAP(c0|00⟩+ c1|01⟩+ c2|10⟩+ c3|11⟩) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




c0
c1
c2
c3

=


c0
c2
c1
c3

 .

So, the amplitudes of |01⟩ and |10⟩ are swapped, as expected.
As a quantum circuit, we can draw a SWAP gate using a vertical line with ×’s
at each end, or by literally swapping the wires:

|a⟩ × |b⟩

|b⟩ × |a⟩
or

|a⟩

|a⟩|b⟩

|b⟩

In Quirk, “Swap” is located in the top Toolbox under “Half Turns”:
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We also included an X gate so that the top qubit is a |1⟩. This swaps with the
bottom qubit, which then swaps with the middle qubit, so the result is that the
middle qubit is |1⟩.
A SWAP gate can also be created using three CNOT gates:

×
=

•

× • •

Or as an equation,

SWAP = (CNOT)(CNOT01)(CNOT).

As a proof, we can work through what each CNOT does and show that the result
is a SWAP:

|a⟩|b⟩ CNOT−−−→ |a⟩|a⊕b⟩ CNOT01−−−−→ |a⊕a⊕b⟩|a⊕b⟩= |(a⊕a)⊕b⟩|a⊕b⟩

= |0⊕b⟩|a⊕b⟩= |b⟩|a⊕b⟩ CNOT−−−→ |b⟩|a⊕b⊕b⟩= |b⟩|a⟩.

As another proof, we can multiply the three CNOTs as matrices and show that
we get the matrix of a SWAP:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

= SWAP.

Exercise 4.21. Entanglion contains four yellow planets besides the Bell States. Please see the game
board at Fig. 4.1. They are labeled Omega Zero through Omega Three. These are not standard
names, but they correspond to the quantum states

|ω0⟩=
1
2
(|00⟩− |01⟩+ |10⟩+ |11⟩) ,

|ω1⟩=
1
2
(−|00⟩+ |01⟩+ |10⟩+ |11⟩) ,

|ω2⟩=
1
2
(|00⟩+ |01⟩+ |10⟩− |11⟩) ,

|ω3⟩=
1
2
(|00⟩+ |01⟩− |10⟩+ |11⟩) .

The blue player corresponds to the left qubit, and the red player corresponds to the right qubit.
(a) Show that when the SWAP gate is applied to |ω0⟩, we get |ω3⟩.
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(b) Show that when X is applied to the left qubit of |ω1⟩, we get |ω3⟩.
(c) Show that when CNOT01 is applied to |ω2⟩, we get |ω0⟩.
(d) Show that when CNOT = CNOT10 is applied to |ω3⟩, we get |ω2⟩.

Exercise 4.22. The Mølmer-Sørensen (MS) gate is a two-qubit gate that can be naturally imple-
mented on trapped ion quantum computers. It transforms Z-basis states by

|00⟩ → 1√
2
(|00⟩+ i|11⟩) ,

|01⟩ → 1√
2
(|01⟩− i|10⟩) ,

|10⟩ → 1√
2
(|10⟩− i|01⟩) ,

|11⟩ → 1√
2
(|11⟩+ i|00⟩) .

(a) What is the MS gate as a matrix?
(b) Show that MS8 = I. (You may use a computer.)

4.4.3 Toffoli Gate

A three-qubit gate that often appears in quantum computing is the Toffoli gate, or
controlled-controlled-NOT gate, that we discussed in Section 1.5.3. Since it is re-
versible, it is a quantum gate, and it flips the right qubit if the left and middle qubits
are 1:

Toffoli|000⟩= |000⟩,
Toffoli|001⟩= |001⟩,
Toffoli|010⟩= |010⟩,
Toffoli|011⟩= |011⟩,
Toffoli|100⟩= |100⟩,
Toffoli|101⟩= |101⟩,
Toffoli|110⟩= |111⟩,
Toffoli|111⟩= |110⟩.

Or
Toffoli|a⟩|b⟩|c⟩= |a⟩|b⟩|ab⊕ c⟩.

Recall from Section 1.5.3 that the Toffoli gate is universal for classical comput-
ing, and any efficient classical algorithm can be converted into an efficient algorithm
only utilizing Toffoli gates. Since the Toffoli gate is a quantum gate, quantum com-
puters can efficiently do everything a classical computer can efficiently do. In terms
of complexity classes, P is contained within BQP.

As a matrix, the columns correspond to Toffoli acting on |000⟩, |001⟩, . . . , |111⟩:
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Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

In Section 1.5.3, we drew the Toffoli gate as a box. In quantum computing, we
typically draw the Toffoli gate similarly to the CNOT gate, with solid dots indicating
the control qubits and ⊕ indicating the target:

•

•

In Quirk, we simply drag two control dots onto the circuit, along with the X gate:

We made the bottom two qubits both in the |1⟩ state, so the Toffoli gate flips the top
qubit to |1⟩.
Exercise 4.23. Show that the Toffoli gate can be constructed from the one-qubit gates Hadamard
H, phase S, T , and T †, plus the two-qubit CNOT gate:

H T † T T † T H

• = • • T † T † S

• • • • • T

Just do the matrix multiplications on the computer.

Exercise 4.24. Consider the anti-Toffoli gate, which was introduced in Exercise 1.41. In quan-
tum computing, it is typically drawn like the anti-CNOT gate from Exercise 4.17, with open dots
indicating the anti-controls:

(a) How does the anti-Toffoli gate act on each basis state?
(b) What is the anti-Toffoli gate as a matrix?
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4.4.4 No-Cloning Theorem

Classically, it is easy to copy or clone information by reading each bit and writing
it somewhere. In quantum computing, cloning qubits is more complicated. Say we
have a qubit in some superposition state. If we measure it in the Z-basis, we get |0⟩
or |1⟩ with some probability. So, we do not learn the original superposition state.
Furthermore, the measurement collapses the state to |0⟩ or |1⟩, meaning we lost
whatever superposition state we originally had.

To investigate this in greater detail, say we have a qubit in a known quantum
state, such as |+⟩. Since we know its state, we can produce additional copies of it:

|+⟩|0⟩ I⊗H−−→ |+⟩|+⟩.

We went from having one copy to two. So, copying a known quantum state is no
problem.

The issue is copying an unknown quantum state. Say we have a qubit in an un-
known quantum state |ψ⟩= α|0⟩+β |1⟩, and we would like to make a copy of it:

|ψ⟩|0⟩ → |ψ⟩|ψ⟩.

Is there a quantum gate U that allows us to copy or clone a general unknown qubit?
U would need to satisfy

U |ψ⟩|0⟩= |ψ⟩|ψ⟩.

Expressing this using linear algebra, we require
U11 U12 U13 U14
U21 U22 U23 U24
U31 U32 U33 U34
U41 U42 U43 U44

(α

β

)
⊗
(

1
0

)
=

(
α

β

)
⊗
(

α

β

)


U11 U12 U13 U14
U21 U22 U23 U24
U31 U32 U33 U34
U41 U42 U43 U44




α

0
β

0

=


α2

αβ

αβ

β 2




U11α +U13β

U21α +U23β

U31α +U33β

U41α +U43β

=


α2

αβ

αβ

β 2


There are many possible solutions, such as

U11 = α, U13 = 0, U21 = 0, U23 = α,

U31 = 0, U33 = α, U41 = 0, U43 = β ,
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but this requires knowing α and β , which we do not know. Any general solution
requires knowing α and β , so there is no operator U that allows us to copy a general,
unknown quantum state.

As another “proof,” U |ψ⟩|0⟩= |ψ⟩|ψ⟩ is akin to going from ψ to ψ2, and this is
quadratic, not linear. The mathematics we are using is called linear algebra because
matrices are linear. Vectors are transformed by linear transformations.

This result is called the no-cloning theorem. While classical information can be
cloned, quantum information can not generally be cloned.

Using this theorem, some scientists have proposed quantum software that cannot
be copied or pirated, and quantum money that cannot be copied or counterfeited,
but that is beyond the scope of this textbook.

Exercise 4.25. Say there is a unitary U that is able to clone qubits in two known states |ψ⟩ and
|φ⟩. That is,

U |ψ⟩|0⟩= |ψ⟩|ψ⟩,
U |φ⟩|0⟩= |φ⟩|φ⟩.

For example, an operator that can clone both |0⟩ and |1⟩ is CNOT, since CNOT|00⟩ = |00⟩ and
CNOT|10⟩= |11⟩. Taking the inner product of the previous two equations,

⟨ψ|⟨0|U†U |φ⟩|0⟩= (⟨ψ|⟨ψ|)(|φ⟩|φ⟩)
(⟨ψ|⟨0|)(|φ⟩|0⟩) = (⟨ψ|⟨ψ|)(|φ⟩|φ⟩)

⟨ψ|φ⟩⟨0|0⟩= ⟨ψ|φ⟩⟨ψ|φ⟩

⟨ψ|φ⟩= (⟨ψ|φ⟩)2 .

For ⟨ψ|φ⟩ to be equal to its square, it must equal 0 or 1. Thus, |ψ⟩ = |φ⟩, or |ψ⟩ and |φ⟩ are
orthogonal. Thus, an operator can only clone states that are orthogonal.

Does there exist a quantum operator U that can clone both
(a) |+⟩ and |−⟩?
(b) |i⟩ and |−i⟩?
(c) |0⟩ and |+⟩?

4.5 Quantum Adders

In Section 1.3, after defining classical bits and logic gates, we demonstrated how
to compute something: the sum of two binary numbers, each of length n. Now that
we have defined qubits and quantum gates, let us also construct quantum circuits
that add binary numbers. Before we do that, however, let us review the classical
ripple-carry adder.

4.5.1 Classical Adder

First, to review, we can add two binary numbers as follows:
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(carry) 1 1 1 0 0

1011
“+” 1110

(sum) 11001

Or, in terms of variables,

(carry) c4 c3 c2 c1 c0

a3a2a1a0

“+” b3b2b1b0

(sum) s4s3 s2 s1 s0

where the initial carry in is c0 = 0. In general, if the binary numbers have length n,
then the output has length n+1.

Classically, we can add binary numbers using the ripple-carry adder from Sec-
tion 1.3.5:

FA

FA

FA

FA

C0 = 0

A0

B0

A1

B1

A2

B2

A3

B3

S0

S1

S2

S3

C4 = S4

where FA denotes a full adder:

FA

Cin

A

B

S

Cout

Each full adder has three inputs: a carry in Cin and two bits A and B. From these, it
computes the sum S = A⊕B⊕Cin and the carry out is Cout = AB+Cin(A⊕B).
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4.5.2 Making the Classical Adder a Quantum Gate

This full adder is not reversible, since it does not have enough outputs to uniquely
determine the inputs. So, it is not a quantum gate. There are several ways, however,
to convert it to a quantum gate.

1. From Exercise 1.45, we can turn the full adder into a reversible circuit by taking
the XOR of each of its outputs with and extra bit:

Cin Cin

A A

B B

FA

S

Cout

D
S ⊕D

E
Cout ⊕ E

This entire circuit can be drawn as a single gate with five inputs and five outputs:

FA
Rev

Cin

A

B

D

E

Cin

A

B

S ⊕D

Cout ⊕ E

This gate is reversible, so it is a quantum gate. As we will discuss later in Sec-
tion 4.6, it is always possible to break up a large quantum gate like this into the
smaller gates we are familiar with, but it could take many smaller gates, and the
best way to do this is an open area of research.

2. From Section 1.3.3, a full adder can be made from two XOR gates, two AND
gates, and one OR gate:
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A

B

Cin
S

Cout

One approach is to replace all five of these logic gates with (more than five)
NAND gates. Then, we can implement each NAND gate using a Toffoli gate,
which is reversible and a quantum gate. While this works in principle, the pro-
cedure can be wasteful, leading to extra gates and qubits.

3. Adapting the previous method, instead of converting all the logic gates into
NAND gates and then Toffoli gates, we convert each logic gate into a re-
versible/quantum gate more directly. The basic logic gates are NOT, AND, OR,
XOR, NAND, and NOR. From Section 2.6.3, the X gate is simply the NOT
gate. From Section 1.5.3, the Toffoli gate can implement AND and NAND by
setting its third bit to 0 or 1, respectively. From Exercise 1.41, the anti-Toffoli
gate can implement NOR and OR by setting its third bit to 0 or 1, respectively.
From Exercise 4.16, two CNOT gates can be used to implement XOR. These
results are summarized in the following table:
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Classical Reversible/Quantum

NOT A A X-Gate A X A

AND
A

B
AB Toffoli

A • A
B • B
0 AB

OR
A

B
A+B anti-Toffoli

A A

B B

1 A+B

XOR
A

B
A⊕B CNOTs

A • A

B • B

0 A⊕B

NAND
A

B
AB Toffoli

A • A
B • B
1 AB

NOR
A

B
A+B anti-Toffoli

A A

B B

0 A+B

Replacing each gate in the full adder, we get the following circuit:

Cin • • Cin

A • • A

B • • B

0
A⊕B

• • A⊕B

0
A⊕B ⊕ Cin

S

0
AB

AB

0
Cin(A⊕B)

Cin(A⊕B)

0 X Cout

The first two CNOTs implement an XOR gate (A⊕B), and the next two CNOTs
also implement an XOR gate, computing A⊕B⊕Cin = S. Next, the Toffoli gate
implements an AND gate (AB), and another Toffoli gate implements another
AND gate [Cin(A⊕B)]. Finally, an X gate turns an extra bit from a 0 to a 1,
and together with an anti-Toffoli gate, they implement an OR gate, yielding
AB+Cin(A⊕ B) = Cout. Since these are all reversible gates, it is a quantum
circuit.
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Notice this method uses several extra bits. Besides the inputs (Cin, A, and B) and
the outputs (S and Cout), three extra bits were used for intermediate calculations:
A⊕B, AB, and Cin(A⊕B). These extra bits are called ancilla bits or ancillary
bits, and in quantum circuits, they should be cleaned up by turning them back
into zeros. This is so they can be reused in later parts of a circuit and so that they
do not cause unintended entanglement. One method for cleaning up ancillary
bits is called uncomputation, where we apply in reverse order the inverses of
the gates that were used to calculate the ancillas. Since the Toffoli and CNOT
gates are their own inverses, the full adder becomes

Cin • • • Cin

A • • • • A

B • • • • B

0 • • • 0

0 S

0 0

0 0

0 X Cout

Simulating in Quirk (see https://bit.ly/34BY6AD), we get

We see that with all three inputs Cin, A, and B set to 1, both the sum S and carry-
out Cout are 1, as expected, and each of the three ancilla qubits correctly start
and end in |0⟩.

4. We can come up with a more clever implementation that uses fewer gates and
bits. Let us do this over the next several sections.

https://bit.ly/34BY6AD
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4.5.3 Quantum Setup

Quantumly, we can encode the binary numbers in two quantum registers |a⟩ and |b⟩.
One way to add them reversibly is to replace |b⟩ with the sum:

|a⟩|b⟩ → |a⟩|s⟩,

where s = a + b. For example, using the quantum adder, 1011 + 1110 = 11001,
would be

|1011⟩|01110⟩ → |1011⟩|11001⟩.

By adding this way, it is always possible to determine the inputs: a is the left register,
and b can be obtained by subtracting a from s. Since the sum can have length n+1,
this means our second register needs an extra qubit |bn⟩ that is initially |0⟩:

|a⟩= |an−1⟩ . . . |a1⟩|a0⟩,
|b⟩= |bn = 0⟩|bn−1⟩ . . . |b1⟩|b0⟩.

where s = a+b.
In the intermediate steps of the computation, the quantum adder also needs to

keep track of carry bits, so we also have a quantum register of length n for the carry
bits:

|c⟩= |cn−1⟩ . . . |c1⟩|c0⟩.

Initially, this ancillary carry register contains all zeros, and at the end of our com-
putation, we should restore them to all zeros. Putting these together, we want our
quantum adder to map

|a⟩|b⟩|c⟩ → |a⟩|s⟩|c⟩.

4.5.4 Quantum Sum

Since CNOT|a⟩|b⟩= |a⟩|a⊕b⟩, we can implement the sum using two CNOTs:

|ci⟩
|ci⟩

• |ci⟩

|ai⟩ •
|ai⟩

|ai⟩

|bi⟩
|ai ⊕ bi⟩

|ai ⊕ bi ⊕ ci⟩ = |si⟩

In the above circuit, the first CNOT turns |bi⟩ into |ai⊕bi⟩, and the second turns it
into |ai⊕bi⊕ ci⟩, which is |si⟩: We can combine this into a single quantum gate:
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|ci⟩

S

|ci⟩
|ai⟩ |ai⟩
|bi⟩ |ai ⊕ bi ⊕ ci⟩ = |si⟩

There are also several ways to create custom gates in Quirk. One way is to first
create the sum by dragging and dropping controls and X gates:

Next, we can click on the “Make Gate” button at the top of the page. A dialog box
will pop up with different options, and we want to create a gate from the circuit we
just drew:

We can either turn the whole circuit into a gate, or we can just select the first two
columns (1:2). Let us also name the gate “S.” If we click “Create Circuit Gate,” we
return to the main screen, and now our gate appears at the bottom right toolbar under
“Custom Gates:”
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We can drag this onto the main circuit like any other gate:

By changing the initial state of the qubits to |1⟩, we can also test the circuit to verify
that it adds correctly.

4.5.5 Quantum Carry

Recall from Exercise 1.30) that the OR gate that is used to calculate Cout can be
replaced by an XOR gate. That is,

Cout = AB⊕Cin(A⊕B).

To implement this, recall the Toffoli gate is

Toffoli|a⟩|b⟩|c⟩= |a⟩|b⟩|ab⊕ c⟩.

This allows us to create the AND of A and B, XORed with C. Then, a quantum carry
circuit is

|ci〉
|ci〉 |ci〉

• |ci〉

|ai〉 •
|ai〉

•
|ai〉

|ai〉

|bi〉 •
|bi〉 |ai ⊕ bi〉

• |ai ⊕ bi〉

|ci+1〉
|aibi ⊕ ci+1〉 |aibi ⊕ ci+1〉

|aibi ⊕ ci(ai ⊕ bi)⊕ ci+1〉

In the above circuit, when ci+1 = 0, this carry gate transforms it to aibi⊕ci(ai⊕bi),
which is precisely Cout. Combining all this into a single quantum gate,
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|ci〉

C

|ci〉
|ai〉 |ai〉
|bi〉 |ai ⊕ bi〉

|ci+1〉 |aibi ⊕ ci(ai ⊕ bi)⊕ ci+1〉

Note in the third row that bi→ ai⊕bi, so we will need to uncompute this later.

4.5.6 Quantum Ripple-Carry Adder

Now, let us construct a quantum adder that was proposed by Vedral, Barenco, and
Ekert in 1996. We order the wires to alternate between ci, ai, and bi:

c0 = 0

a0

b0

c1 = 0

a1

b1

c2 = 0

a2

b2

c3 = 0

a3

b3

b4 = 0

For the first operation, we can either calculate the sum s0 using our sum circuit S,
or we can calculate the carry c1 using our carry circuit C. If we begin by calculating
s0, then we no longer have b0, but we need b0 to calculate the carry c1. So, let us
calculate the carry first:
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c0 = 0

C

c0 = 0

a0 a0

b0 a0 ⊕ b0

c1 = 0 c′1

a1 a1

b1 b1

c2 = 0 c2 = 0

a2 a2

b2 b2

c3 = 0 c3 = 0

a3 a3

b3 b3

b4 = 0 b4 = 0

Now that we have c′1, we can either add it to a1 and b1, or we can calculate the carry
c′2. Again, if we add first, then we no longer have b1 to calculate the carry. So, let us
calculate the next carry, and repeating this argument, we calculate all the carries:

c0 = 0

C

c0 = 0

a0 a0

b0 a0 ⊕ b0

c1 = 0

C

c′1

a1 a1

b1 a1 ⊕ b1

c2 = 0

C

c′2

a2 a2

b2 a2 ⊕ b2

c3 = 0

C

c′3

a3 a3

b3 a3 ⊕ b3

b4 = 0 s4

Note the last carry corresponds to the leftmost bit of the sum s4. Now, to calculate
s3 using our sum circuit S, we need the inputs to be c′3, a3, and b3, but currently
the third input is a3⊕b3. To make this third input simply b3, we CNOT a3 with it,
resulting in a3⊕ (a3⊕b3) = (a3⊕a3)⊕b3 = 0⊕b3 = b3:
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c0 = 0

C

c0 = 0

a0 a0

b0 a0 ⊕ b0

c1 = 0

C

c′1

a1 a1

b1 a1 ⊕ b1

c2 = 0

C

c′2

a2 a2

b2 a2 ⊕ b2

c3 = 0

C

c′3

a3 • a3

b3 b3

b4 = 0 s4

Now, we can use our sum circuit S to calculate b3:

c0 = 0

C

c0 = 0

a0 a0

b0 a0 ⊕ b0

c1 = 0

C

c′1

a1 a1

b1 a1 ⊕ b1

c2 = 0

C

c′2

a2 a2

b2 a2 ⊕ b2

c3 = 0

C
S

c′3

a3 • a3

b3 s3

b4 = 0 s4

Next, we need to undo c′3 so that we just have c3 = 0. We can do this by inverting
the carry gate:
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C†

•

=
• •

• •

Note since C is a quantum gate, it is unitary, so its inverse is equal to its conjugate
transpose (i.e., C−1 =C†). Applying this,

c0 = 0

C

c0 = 0

a0 a0

b0 a0 ⊕ b0

c1 = 0

C

c′1

a1 a1

b1 a1 ⊕ b1

c2 = 0

C C†

c′2

a2 a2

b2 b2

c3 = 0

C
S

c3 = 0

a3 • a3

b3 s3

b4 = 0 s4

This also converted a2⊕ b2 back to b2, so we can again use the sum circuit to find
s2 = a2⊕b2⊕ c′2:
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c0 = 0

C

c0 = 0

a0 a0

b0 a0 ⊕ b0

c1 = 0

C

c′1

a1 a1

b1 a1 ⊕ b1

c2 = 0

C C†
S

c′2

a2 a2

b2 s2

c3 = 0

C
S

c3 = 0

a3 • a3

b3 s3

b4 = 0 s4

Repeating this process, we can apply C† to convert c′2 back to c2 = 0 and a1⊕ b1
back to b1, and then use the sum circuit to compute s1, and so forth, resulting in the
following complete circuit:

c0 = 0

C C†
S

c0 = 0

a0 a0

b0 s0

c1 = 0

C C†
S

c1 = 0

a1 a1

b1 s1

c2 = 0

C C†
S

c2 = 0

a2 a2

b2 s2

c3 = 0

C
S

c3 = 0

a3 • a3

b3 s3

b4 = 0 s4

This is our quantum ripple-carry adder, and |b⟩ has been replaced by |s⟩ (while
keeping |a⟩ and |c⟩ unchanged), as we wanted.

Note the qubits in this circuit have a different order. Rather than taking

|a⟩|b⟩|c⟩ → |a⟩|s⟩|c⟩,
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our circuit takes

|b4⟩|b3⟩|a3⟩|c3⟩|b2⟩|a2⟩|c2⟩|b1⟩|a1⟩|c1⟩|b0⟩|a0⟩|c0⟩

to
|s4⟩|s3⟩|a3⟩|c3⟩|s2⟩|a2⟩|c2⟩|s1⟩|a1⟩|c1⟩|s0⟩|a0⟩|c0⟩.

Let us verify our quantum circuit in Quirk by adding |a⟩ = |1011⟩ and |b⟩ =
|01110⟩, which should result in |s⟩= |11001⟩. With the qubit ordering from above,
where all the carry qubits are |0⟩ at the start and end of the computation, the quantum
ripple-carry adder should take

|0110100110010⟩ → |1110000010110⟩.

You can view the circuit in Quirk by going to https://bit.ly/39NzEf9. It is also
shown below:

We see that with the input |0110100110010⟩, the output is |1110000010110⟩, as
expected.

Exercise 4.26. Simulate the quantum ripple-carry adder in Quirk, and use it to add 1111+1011.

Exercise 4.27. We can use an adder to subtract binary numbers by using the fact that

a−b = a+b.

https://bit.ly/39NzEf9
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In Quirk, modify your circuit from Exercise 4.26 to subtract 1111− 1011. Do this by adding X
gates to each bit of the input a (this gives a). Then, the adder computes a+b. Then, add X gates to
each bit of s, except for the extra bit s4, since it is not needed and should stay 0. This gives a+b.

Exercise 4.28. While teaching a course on quantum computing in Fall 2018, one of my Creighton
University students, Lorenzo Riva, proposed the following change to the quantum ripple-carry
adder:

c0 = 0

C C†
S

c0 = 0

a0 a0

b0 s0

c1 = 0

C C†
S

c1 = 0

a1 a1

b1 s1

c2 = 0

C C†
S

c2 = 0

a2 a2

b2 s2

c3 = 0

C

• c3 = 0

a3 a3

b3 s3

b4 = 0 s4

That is, the CNOT between a3 and b3, and the bottommost S (sum, not the S =
√

Z gate), can be
replaced by a single CNOT between c3 and b3.

(a) Explain why this simplification is correct.
(b) If each binary number has length n, how many Toffoli gates and how many CNOT gates does

this circuit use?

Exercise 4.29. In this exercise, we will learn about another quantum adder that does not need
carry bits. It is called Draper’s adder, and it uses the “quantum Fourier transform,” which will be
discussed later in the textbook in Section 7.7.3.

First, let us define a single-qubit gate Rr that rotates about the z-axis of the Bloch sphere by
angle 360◦/2r . For example, R1 = Z is a rotation by 180◦, R2 = S is a rotation by 90◦, R3 = T is a
rotation by 45◦, and R4 is a rotation by 22.5◦. Rotations about axes can be created in Quirk using
the “Make Gate” feature, e.g., R4 is
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We also have the conjugate transpose (or inverse) of the rotation, which we denote R†
r , and it rotates

about the z-axis by −360◦/2r . For example, R†
4 rotates by −22.5◦, and since it is a negative angle,

it rotates the “other way.”
Draper’s quantum adder transforms

|a⟩|b⟩ → |a+b⟩|b⟩,

and it does not use any carry qubits. Instead of using the ripple-carry adder, The circuit for the
adder is a little long, so we break it up over three parts:

Part 1
b0 . . .

b1 . . .

b2 . . .

b3 . . .

a0 • • • H . . .

a1 • • H R2
. . .

a2 • H R2 R3
. . .

a3 H R2 R3 R4
. . .

Part 2. . . • • • • . . .

. . . • • • . . .

. . . • • . . .

. . . • . . .

. . . R1
. . .

. . . R1 R2
. . .

. . . R1 R2 R3
. . .

. . . R1 R2 R3 R4
. . .
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Part 3
. . . b0

. . . b1

. . . b2

. . . b3

. . . H • • • s0

. . . R†
2 H • • s1

. . . R†
3 R†

2 H • s2

. . . R†
4 R†

3 R†
2 H s3

Implement Draper’s adder in Quirk and use it to add |a⟩= |0111⟩ and |b⟩= |0011⟩.

4.5.7 Circuit Complexity

Generalizing this, adding two n-bit strings uses n carry gates C, n−1 inverses of the
carry gate C†, n sum gates S, and an extra CNOT gate. Each C and C† gate uses two
Toffoli gates and one CNOT gate, and each S gate uses two CNOT gates. The total
number of quantum gates to add two n-bit strings is summarized in the following
table:

Gate No. of Gates Total No. of Toffolis Total No. of CNOTs

C n 2n n
C† n−1 2(n−1) n−1
S n 0 2n

Extra CNOT 1 0 1

4n−2 4n

Altogether, the quantum ripple-carry adder uses 4n−2 Toffoli gates and 4n CNOT
gates, which is linear in n, i.e., Θ(n), so the algorithm is efficient.

Exercise 4.30. How many Toffoli gates and how many CNOT gates does the quantum ripple-carry
adder need to add two (a) 4-bit strings, (b) 8-bit strings.

Exercise 4.31. To add two binary numbers of length 4, our quantum ripple-carry adder used 13
qubits. How many qubits does the quantum ripple-carry adder need to add two binary numbers of
length n?
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4.5.8 Adding in Superposition

Note our quantum ripple-carry adder is a quantum circuit, so it can also act on
superpositions. For example, if |a⟩ is an equal superposition of 6 and 3, i.e.,

|a⟩= 1√
2
(|0110⟩+ |0011⟩) ,

and if |b⟩ is 11, then
|b⟩= |01011⟩,

then the quantum ripple-carry adder turns |a⟩|b⟩ into

1√
2
(|0110⟩|10001⟩+ |0011⟩|01110⟩) .

It may appear as though we solved two addition problems at once, i.e., in “paral-
lel,” since both 6+ 11 = 17 and 3+ 11 = 14 appear in the answers as |10001⟩ and
|01110⟩, respectively, but this is not the case. When we measure the result, we get
one sum with probability 1/2 or the other sum with probability 1/2. In contrast, in
parallel computing, two computers calculate both answers at the same time, so we
get both sums at the end.

It is incorrect to think of a quantum computer as a massively parallel classical
computer because we must measure and only get one result. In fact, this misunder-
standing is so common that it might be best to avoid the term “parallel” altogether
when describing quantum computing.

We have seen our first quantum algorithm: the ripple-carry adder. We will get to
many more quantum algorithms in Chapter 7, but there are several other topics to
cover first.

Exercise 4.32. Read “Quantum Computing: A Soccer Analogy” at

https://medium.com/@thomaswong_8663/quantum-computing-a-soccer-a
nalogy-1335644a1472

Answer the following questions and fill in the blanks.
(a) Who is the author of the article, and what is their relationship with the author of this textbook?
(b) “Analogously, the essence of quantum computing is to change the rules so that a computer

can now use its “ .” That is, the rules of the game are changed from
the laws of classical physics to the laws of physics. As a result, a
quantum computer can solve problems faster by using its “hands.” For
other problems, using one’s “feet” is better, so a quantum computer is

for these problems.”

https://medium.com/@thomaswong_8663/quantum-computing-a-soccer-analogy-1335644a1472
https://medium.com/@thomaswong_8663/quantum-computing-a-soccer-analogy-1335644a1472
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4.6 Universal Quantum Gates

4.6.1 Definition

A set of quantum gates that allows us to approximate any quantum gate to any
desired precision is called a universal gate set. Recall in Section 1.2.5 that we used
the same term to describe a set of logic gates that can reproduce all classical gates.
It is usually clear from the context. For example, if the Hadamard gate is involved,
then we must be discussing quantum gates because there is no classical Hadamard
gate. Or, we might describe a set as “universal for classical computing” or “universal
for quantum computing.”

Proving that a set of gates is universal is a more advanced topic, which we do
not discuss in this textbook. Nielsen and Chuang is a good resource for additional
details. Instead, we provide some intuition below.

4.6.2 Components of a Universal Gate Set

There are several components that we need for a set of quantum gates to be universal.

1. Superposition. We must be able to produce superpositions. For example the
Hadamard gate can create superpositions, such as H|0⟩ = |+⟩. Other gates are
not. Z, S, and T only apply phases; they do not create superpositions of |0⟩ and
|1⟩. Similarly, the X and CNOT gates only flip |0⟩ and |1⟩, so they cannot create
superpositions. Y only applies phases and flips, so again superpositions cannot
be created by it.

2. Entanglement. We must be able to entangle qubits. One-qubit gates, such as H,
cannot do this since they only act on a single qubit. A gate must act on at least
two qubits to produce entanglement. CNOT can produce entanglement since
CNOT|+⟩|0⟩= |Φ+⟩. Not all two qubit gates produce entanglement, however.
The SWAP gate cannot generate entanglement since it only swaps two qubits.

3. Complex amplitudes. CNOT and H only contain real numbers, so they do not
produce states with complex amplitudes.

Just because a set of gates contains these properties does not mean it is universal. For
example, consider {CNOT,H,S}. Although this set satisfies all of the previous re-
quirements (entanglement, superposition, and complex amplitudes), the Gottesman-
Knill theorem says that a quantum circuit containing only these gates is efficiently
simulated by a classical computer.

Introducing some terminology, the set of gates that can be constructed us-
ing, or generated by, {CNOT,H,S} is called the Clifford group1 Then, the set

1 Mathematically, the Clifford group is the normalizer of the Pauli group, which is generated by
the Pauli matrices.
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{CNOT,H,S} is called a Clifford group generator. Thus, a universal quantum gate
set should generate more than the Clifford group:

4. Generate more than the Clifford group.

It is unknown if a set of quantum gates that generates superposition, entanglement,
complex amplitudes, and more than the Clifford group must be universal. It may be
that a set satisfies all four of these properties, but is still not universal.

Exercise 4.33. What property are each of the following gate sets lacking to be universal for quan-
tum computing?

(a) {Toffoli,H,Z}.
(b) {H,X ,Y,Z,S,T}.
(c) {SWAP,H,S,T}.

4.6.3 Examples of Universal Gate Sets

Some examples of universal gate sets are:

• {CNOT,all single-qubit gates} is universal for quantum computing.2

• {CNOT,H,T} is universal for quantum computing.3 That is, although the Clif-
ford group generator {CNOT,H,S} is not universal for quantum computing,
replacing S with T does yield a universal gate set. H and T are sufficient to
approximate all one-qubit gates.

• {CNOT,Rπ/8,S} is universal for quantum computing, where

Rπ/8 =

(
cos
(

π

8

)
−sin

(
π

8

)
sin
(

π

8

)
cos
(

π

8

) ) .

Although the Clifford group generator {CNOT,H,S} is not universal for quan-
tum computing, replacing H with Rπ/8 does yield a universal gate set.

• {Toffoli,H,S} is universal for quantum computing.4 Although {CNOT,H,S} is
not universal for quantum computing, replacing CNOT with Toffoli does yield
a universal gate set.

• H plus almost any two-qubit unitary.

Exercise 4.34. The Clifford group generator {CNOT,H,S} is not universal for quantum comput-
ing. Give three ways to modify the it so that it is universal for quantum computing.

2 A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. H. Margolus, P. W. Shor, T. Sleator, J.
A. Smolin, and H. Weinfurter. Elementary gates for quantum computation. Phys. Rev. A 52, 3457
(1995).
3 P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan. A new universal and fault-
tolerant quantum basis. Information Processing Letters, 75, 101 (2000).
4 A. Y. Kitaev. Quantum computations: Algorithms and error correction. RMS: Russian Mathe-
matical Surveys 52, 1191 (1997).
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4.6.4 Solovay-Kitaev Theorem

The Solovay-Kitaev theorem says that with any universal gate set, we can approx-
imate a quantum gate on n qubits to precision ε using Θ(2n logc(1/ε)) gates for
some constant c. The dependence on the number of qubits 2n is what we might ex-
pect since an operator on n qubits is a matrix of 2n×2n entries. The dependence on
the precision logc(1/ε) is great! The precision ε is the “distance” (in some measure-
ment or metric) that the approximate quantum gate is to the actual quantum gate,
and we want it to be small. So 1/ε is big, but taking the logarithm of it makes it
small. A logarithm to a constant power, such as logc, is a polynomial of a logarithm,
so is also called polylog. This is also considered small. Thus, this dependence means
our approximation quickly converges on the actual quantum gate.

4.6.5 Quantum Computing without Complex Numbers

Recall any complex number z has a real part x and an imaginary part y, i.e., z= x+ iy.
Since x and y are real numbers, this means we can express any complex number as
two real numbers (x,y) and keep track of the fact that they play different roles. So
in theory, we can formulate all of quantum computing just in terms of real numbers.
Then, a universal set of quantum gates technically does not need to produce states
with complex amplitudes. For example, the following sets are also universal for
quantum computing:

• {Toffoli,any single-qubit gate that is basis-changing} is universal for quantum
computing.5 A gate is basis-changing if it changes the Z-basis {|0⟩, |1⟩} to an-
other basis. For example, H is basis-changing, since it changes between the
Z-basis {|0⟩, |1⟩} and the X-basis {|+⟩, |−⟩}, so {Toffoli,H} is universal for
quantum computing. In contrast, Z is not basis-changing since Z|0⟩ = |0⟩ and
Z|1⟩=−|1⟩ ≡ |1⟩.
As Dorit Aharonov said, “This is perhaps the simplest universal set of gates that
one can hope for [...] It shows that one only needs to add the Hadamard gate to
make a ‘classical’ set of gates quantum universal.”6

• The controlled-Hadamard gate {CH} is universal for quantum computing.7 In
this gate, H is applied to the right qubit if the left qubit is 1. That is, it acts on
Z-basis states as

5 Y. Shi, Both Toffoli and controlled-NOT need little help to do universal quantum computation,
arXiv:quant-ph/0205115 (2002).
6 D. Aharonov, A Simple Proof that Toffoli and Hadamard are Quantum Universal, arXiv:quant-
ph/0301040 (2003).
7 D. J. Shepherd, T. Franz, and R. F. Werner, Universally Programmable Quantum Cellular Au-
tomaton, Phys. Rev. Lett. 97, 020502 (2006).
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CH|00⟩= |00⟩,
CH|01⟩= |01⟩,

CH|10⟩= |1+⟩= 1√
2
(|10⟩+ |11⟩) ,

CH|11⟩= |1−⟩= 1√
2
(|10⟩− |11⟩) .

This can simulate both the Toffoli gate and the Hadamard gate, so from the
previous bullet, it is universal.

• {CNOT,any single-qubit gate whose square is basis-changing} is universal for
quantum computing.8 An example of a single-qubit gate whose square is basis-
changing is the following gate U :

U |0⟩=
√

3
2
|0⟩+ 1

2
|1⟩,

U |1⟩= −1
2
|0⟩+

√
3

2
|1⟩.

Next, if we apply U again, meaning twice to the Z-basis states, we get

U2|0⟩=U

(√
3

2
|0⟩+ 1

2
|1⟩
)

=
1
2
|0⟩+

√
3

2
|1⟩,

U2|1⟩=U

(
−1
2
|0⟩+

√
3

2
|1⟩
)

=
−
√

3
2
|0⟩+ 1

2
|1⟩.

This is an orthonormal basis, so U2 is basis-changing. CNOT and U together
form a universal set of quantum gates.
In contrast, the square of the Hadamard gate is not basis-changing because ap-
plying the Hadamard gate twice does nothing:

H2|0⟩= |0⟩,
H2|1⟩= |1⟩.

So, {CNOT,H} is not universal, whereas from the first bullet point, {Toffoli,H}
is universal.

8 Y. Shi (2002).
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4.7 Quantum Error Correction

4.7.1 Decoherence

Recall a qubit can be represented by a point on the Bloch sphere:

x

y

z

|0〉

|1〉

The north pole corresponds to |0⟩ and the south pole corresponds to |1⟩. For a clas-
sical bit, these would be the only possible states, and the only error is for the bit to
completely flip between the north and south poles. For a qubit, however, every loca-
tion on the Bloch sphere is a different state. For example, beginning at |0⟩, instead
of completely flipping to |1⟩, a qubit could experience a partial bit flip error, where
it only rotates a little toward |1⟩:

x

y

z

|0〉

|1〉

Since a full bit flip corresponds to the X gate, and the X gate is a rotation about
the x-axis by π = 180◦, a partial bit flip corresponds to rotating about the x-axis by
some angle. So, in the above figure, the state is moving leftward, down the Bloch
sphere, in the yz-plane. This small change is an error.

To further complicate matters, a qubit’s state is not just its latitude up and down
the Bloch sphere, but also its longitude around the Bloch sphere. For example, if a
qubit initially in the |+⟩ state gets bumped to the side, we get a different state:
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x

y

z

|+〉

This is called a phase flip error, because rotations around the z-axis correspond
changes in the relative phase. For example, |+⟩= (|0⟩+ |1⟩)/

√
2 and |−⟩= (|0⟩−

|1⟩)/
√

2 lie on opposite sides of the equator.
Since qubits are more sensitive to errors than classical bits, small interactions

with the environment can move the qubit to a different location on the Bloch sphere.
This process is called decoherence. In practice, decoherence is the biggest obstacle
to building large-scale quantum computers, since it is very difficult to isolate a qubit
from its environment while making it accessible for quantum gates and measure-
ments.

Next, we will see how to correct for bit-flip errors and then phase-flip errors.
Then, we will combine both types of error correction into what is known as the
Shor code.

4.7.2 Bit-Flip Code

To make it possible to correct bit-flip errors, we use three physical qubits to encode
each logical qubit:

|0L⟩= |000⟩, |1L⟩= |111⟩,

where subscript L denotes a logical qubit. A logical qubit is, in general, a superpo-
sition of |0L⟩ and |1L⟩:

α|0L⟩+β |1L⟩= α|000⟩+β |111⟩.

A way to create this encoding is given in Exercise 4.35.
For the moment, let us first consider the case where a bit is completely flipped

(ε = 1). For example, say the left qubit flips, so

α|000⟩+β |111⟩ → α|100⟩+β |011⟩
= β |011⟩+α|100⟩.
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We would like to detect this error and correct it. Classically, we could just measure
the bits, see which one disagrees with the others, and then flip it back to correct
it. Quantumly, however, if we measure the bits (or even just a single bit), the state
collapses to |100⟩ or |011⟩, and we lose the superposition. So, instead of measuring
the bits, we follow Section 1.6.3 and measure the parity of adjacent qubits. Recall
that the parity of two bits, a and b, can be calculated using Exclusive OR. That is,
parity(a,b) = a⊕ b. Also recall that CNOT|a⟩|b⟩ = |a⟩|a⊕b⟩. Then, we can use
two CNOTs to calculate the parity of two qubits, putting the answer in an ancilla
qubit:

|a〉 • |a〉

|b〉 • |b〉

|0〉
|0⊕ a〉 = |a〉

|a⊕ b〉

With three qubits, we can calculate the parities of adjacent qubits by doing this
twice:

|a〉 • |a〉
|b〉 • • |b〉
|c〉 • |c〉
|0〉 |a⊕ b〉
|0〉 |b⊕ c〉

In this example, the parity of the left two qubits is 1, and the parity of the right two
qubits is 0. This tells us that the left two qubits differ, and the right two qubits are the
same. Then, we know the left qubit has flipped, and we inferred this without directly
measuring and collapsing the state. This is called an error syndrome. To correct
the error, we can simply apply (X ⊗ I ⊗ I), which results in β |111⟩+ α|000⟩ =
α|000⟩+β |111⟩, thus correcting the error.

Now, say there is a partial flip. In Section 2.6.4, it was stated that on the Bloch
sphere, a rotation by angle θ about the axis n̂ = (nx,ny,nz) is given by Eq. (2.10):

eiα
[

cos
(

θ

2

)
I− isin

(
θ

2

)
(nxX +nyY +nzZ)

]
, (2.10 revisited)

where eiα is a global phase, so α can be chosen as we please. Now, a partial bit flip
corresponds to a rotation about the x-axis by some angle θ , so we have n̂ = (1,0,0).
We also choose α = π/2. Then, the rotation corresponds to

icos
(

θ

2

)
I + sin

(
θ

2

)
X .

Letting ε = sin(θ/2), we get cos(θ/2) =
√

1− sin2(θ/2) =
√

1− ε2, so the rota-
tion is
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i
√

1− ε2I + εX = i
√

1− ε2

(
1 0
0 1

)
+ ε

(
0 1
1 0

)
=

(
i
√

1− ε2 ε

ε i
√

1− ε2

)
.

Thus, the partial bit flip maps

|0⟩ → i
√

1− ε2|0⟩+ ε|1⟩,

|1⟩ → ε|0⟩+ i
√

1− ε2|1⟩.

When θ = π , ε = 1, and we get |0⟩ → |1⟩ and |1⟩ → |0⟩, which is a complete bit
flip, or the X gate.

For example, if the left qubit partially flips,

α|000⟩+β |111⟩ → α

(
i
√

1− ε2|000⟩+ ε|100⟩
)
+β

(
i
√

1− ε2|111⟩+ ε|011⟩
)

= αi
√

1− ε2|000⟩+αε|100⟩+β i
√

1− ε2|111⟩+βε|011⟩

= αi
√

1− ε2|000⟩+βε|011⟩+αε|100⟩+β i
√

1− ε2|111⟩.

Now, we measure the parity of adjacent qubits. Labeling the qubits |q2q1q0⟩, we get
the following possible outcomes with corresponding probabilities:

• parity(q2,q1) = 0 and parity(q1,q0) = 0 with probability∣∣∣αi
√

1− ε2
∣∣∣2 + ∣∣∣β i

√
1− ε2

∣∣∣2 = |α|2 (1− ε
2)+ |β |2 (1− ε

2)
=
(
|α|2 + |β |2

)(
1− ε

2)
= 1− ε

2,

and the state collapses to

A
(

αi
√

1− ε2|000⟩+β i
√

1− ε2|111⟩
)
= α|000⟩+β |111⟩,

where A = 1/i
√

1− ε2 is a normalization constant. We see that the resulting
state is already corrected, so we do not need to do anything further to correct
the error. That is, the measurement fixed the error.

• parity(q2,q1) = 1 and parity(q1,q0) = 0 with probability

|βε|2 + |αε|2 = |α|2|ε|2 + |β |2|ε|2

=
(
|α|2 + |β |2

)
|ε|2

= |ε|2,

and the state collapses to
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B(βε|011⟩+αε|100⟩) = β |011⟩+α|100⟩,

where B = 1/ε is a normalization constant. To correct this state, we apply (X⊗
I⊗ I) so that it becomes

β |111⟩+α|000⟩= α|000⟩+β |111⟩,

so we have corrected the error.
• parity(q2,q1) = 0 and parity(q1,q0) = 1 with probability 0.
• parity(q2,q1) = 1 and parity(q1,q0) = 1 with probability 0.

Finally, we need to reset the ancilla qubits to |0⟩ so that we can reuse them, since
we want to repeatedly do error correction to fix any errors that appear. We can do
this by conditionally applying an X gate. If we measured a parity to be 0, we know
that the ancilla qubit is |0⟩, so we leave it alone. If we measured the parity to be 1,
we know that the ancilla qubit is |1⟩, and so we apply an X gate to it, turning it into
a |0⟩.

To summarize, when we have a partial bit flip, the measurement forces it to be
corrected or to become a complete bit flip, which we can correct by applying an X
gate. Here is the quantum circuit for this:

|q0〉 • X

|q1〉 • • X

|q2〉 • X

|0〉 • • |0〉

|0〉 • • |0〉

The first four columns are the CNOTs that calculate the parities of adjacent qubits.
Then, we measure these parities, as shown by the meter symbols, which results
in classical bits. We denote these classical bits/wires using double lines. We end
with three X gates conditioned on these classical bits/parities. If both parities are 1,
then q1 flipped, so we apply an X gate to it to correct it. If parity(q2,q1) = 0 and
parity(q1,q0) = 1, then q0 flipped, so we apply an X gate to it to correct it. Finally,
if parity(q2,q1) = 1 and parity(q1,q0) = 0, then q2 flipped, so we apply an X gate
to it to correct it. We end by resetting the ancillas to |0⟩, indicated by the boxes with
|0⟩ in them. Simulating this in Quirk (see https://bit.ly/3jZ4zKQ),

https://bit.ly/3jZ4zKQ
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In this simulation, the logical qubit starts as |0L⟩= |000⟩. In the first column of the
circuit, we can visualize the states on Bloch spheres and confirm that we have |000⟩.
In the second column, we introduce a bit-flip error by applying a bit-flip X t , with
t varying from 0 to 360◦, to q2. In the third column, we again visualize the states
on the Bloch sphere, confirming that |q2⟩ ̸= |0⟩. Then, we have our error correction
circuit, and at the very end of the circuit, the top three qubits are restored to |000⟩,
as expected. Note Quirk does not have a “reset” tool, so the ancillas have not yet
been restored to |0⟩. This would need to be done to repeat the circuit.

We can modify the above circuit using the principle of deferred measurement,
which says,

Intermediate measurements that are used to control operations can be moved
after the operations, and the controls can be replaced by quantum controls.

Then, the previous quantum circuit to correct bit flips is equivalent to

|q0〉 • X

|q1〉 • • X

|q2〉 • X

|0〉 • • • |0〉

|0〉 • • |0〉

Phrased another way, we can collapse and then do the controlled operations, or we
can do the controlled operations in superposition, and then collapse. Let us prove
this for our previous example, where the qubits started in the state α|000⟩+β |111⟩,
but then the left qubit partially flips with amplitude ε . From earlier, if we include
the ancilla qubits, the state after the first four CNOTs is

αi
√

1− ε2|00000⟩+βε|10011⟩+αε|10100⟩+β i
√

1− ε2|00111⟩.

Recall the qubits are ordered as |parity(q2,q1)⟩|parity(q1,q0)⟩|q2⟩|q1⟩|q0⟩. Now, if
we apply the controlled- and anti-controlled-X gates to correct the answers, the state
becomes



4.7 Quantum Error Correction 195

αi
√

1− ε2|00000⟩+βε|10111⟩+αε|10000⟩+β i
√

1− ε2|00111⟩

= i
√

1− ε2|00⟩(α|000⟩+β |111⟩)+ ε|10⟩(α|000⟩+β |111⟩)

=
(

i
√

1− ε2|00⟩+ ε|10⟩
)
(α|000⟩+β |111⟩) .

Measuring the ancilla qubits now, we get:

• parity(q2,q1) = 0 and parity(q1,q0) = 0 with probability 1− ε2, and the state
collapses to

|00⟩(α|000⟩+β |111⟩) .

• parity(q2,q1) = 1 and parity(q1,q0) = 0 with probability ε2, and the state col-
lapses to

|10⟩(α|000⟩+β |111⟩) .

This is the same result as before, where we first measured the ancilla qubits and
then applied the controlled- and anti-controlled-X gates. Finally, if the second
outcome occurs, we apply an X gate to the left ancilla to reset it to 0, yielding
|00⟩(α|000⟩+β |111⟩).

Simulating the circuit with deferred measurement in Quirk (see https://bit.

ly/3EyuBMK),

The top three qubits have been successfully corrected to |000⟩. Again, we have not
reset the ancilla qubits at the end of this circuit, which would be necessary to repeat
the error correction scheme.

Exercise 4.35. In this exercise, we will work through encoding a qubit in the bit-flip code. Say we
have a single qubit in the state

|ψ⟩= α|0⟩+β |0⟩.
We want to encode this using the bit-flip code. we add two more qubits to our system, all initially
in |0⟩, so our three qubits are in the state

|ψ00⟩= (α|0⟩+β |1⟩) |00⟩= α|000⟩+β |100⟩.

Starting with this state, we apply the following quantum circuit:

|0〉
|0〉 =

|ψ〉 • • •

https://bit.ly/3EyuBMK
https://bit.ly/3EyuBMK
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Show the final state, after the circuit, is

α|000⟩+β |111⟩= α|0L⟩+β |1L⟩.

Exercise 4.36. A logical qubit is in the state

|ψ⟩=
√

3
2
|0L⟩+

1
2
|1L⟩,

where we encode the logical qubit using three physical qubits:

|ψ⟩=
√

3
2
|000⟩+ 1

2
|111⟩.

You suspect that a partial bit flip has occurred to one of the bits, so you measure the parity of
adjacent qubits.

(a) If parity(q2,q1) = 0 and parity(q1,q0) = 0, what quantum gate(s) should you apply to fix the
error, if any?

(b) If parity(q2,q1) = 0 and parity(q1,q0) = 1, what quantum gate(s) should you apply to fix the
error, if any?

(c) If parity(q2,q1) = 1 and parity(q1,q0) = 0, what quantum gate(s) should you apply to fix the
error, if any?

(d) If parity(q2,q1) = 1 and parity(q1,q0) = 1, what quantum gate(s) should you apply to fix the
error, if any?

4.7.3 Phase-Flip Code

We can similarly correct phase-flip errors by using three physical qubits to encode
each logical qubit, but instead of using three |0⟩’s and |1⟩’s, we use three |+⟩’s and
|−⟩’s, i.e.,

|0L⟩= |+++⟩, |1L⟩= |−−−⟩,

so a general superposition is

α|0L⟩+β |1L⟩= α|+++⟩+β |−−−⟩.

A way to create this encoding is given in Exercise 4.37. The reason why we use |+⟩
and |−⟩ is because a complete phase flip (the Z gate) switches between these states:

|+⟩= 1
2
(|0⟩+ |1⟩) Z−→ 1

2
(|0⟩− |1⟩) = |−⟩,

|−⟩= 1
2
(|0⟩− |1⟩) Z−→ 1

2
(|0⟩+ |1⟩) = |+⟩.

Say the left qubit experiences a complete phase flip:

α|+++⟩+β |−−−⟩→ α|−++⟩+β |+−−⟩.

Then, we detect and correct this just like we did for the bit-flip error, except working
in the X-basis. So, we measure the parity of consecutive qubits in the X-basis, which
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is 0 if the number of minuses is even and 1 if the number of minuses is odd. In
Exercise 4.38 and Exercise 4.39, you will show that the parities can be calculated
using

|a〉 H • H |a〉

|b〉 H • • H |b〉

|c〉 H • H |c〉

|0〉 |a⊕ b〉

|0〉 |b⊕ c〉

In our example where the left qubit experienced a phase flip, we get parity 1 for the
left two qubits and parity 0 for the right two qubits, implying that the first qubit is
flipped. So we apply (Z⊗ I⊗ I), restoring α|+++⟩+β |−−−⟩.

Now for partial phase flips, a partial phase flip corresponds to a rotation about the
z-axis by some angle θ , so again using Eq. (2.10) with α = π/2 and ε = sin(θ/2),
but now with n̂ = (0,0,1), we get that the rotation is

i
√

1− ε2I + εZ = i
√

1− ε2

(
1 0
0 1

)
+ ε

(
1 0
0 −1

)
=

(
i
√

1− ε2 + ε 0
0 i

√
1− ε2− ε

)
.

Thus, the partial phase flip maps

|0⟩ →
(

i
√

1− ε2 + ε

)
|0⟩,

|1⟩ →
(

i
√

1− ε2− ε

)
|1⟩.

Note when θ = π , ε = 1, and we get |0⟩→ |0⟩ and |1⟩→−|1⟩, which is a complete
phase flip, or the Z gate. Let us see how a partial phase flip transforms |+⟩ and |−⟩:

|+⟩= 1√
2
(|0⟩+ |1⟩)

→ 1√
2

[(
i
√

1− ε2 + ε

)
|0⟩+

(
i
√

1− ε2− ε

)
|1⟩
]

= i
√

1− ε2 1√
2
(|0⟩+ |1⟩)+ ε

1√
2
(|0⟩− |1⟩)

= i
√

1− ε2|+⟩+ ε|−⟩,

|−⟩= 1√
2
(|0⟩− |1⟩)

→ 1√
2

[(
i
√

1− ε2 + ε

)
|0⟩−

(
i
√

1− ε2− ε

)
|1⟩
]
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= ε
1√
2
(|0⟩+ |1⟩)+ i

√
1− ε2 1√

2
(|0⟩− |1⟩)

= ε|+⟩+ i
√

1− ε2|−⟩.

Using this, if we have a logical qubit in the state

α|0L⟩+β |1L⟩= α|+++⟩+β |−−−⟩,

a partial phase flip on the left qubit transforms this to

α

(
i
√

1− ε2|+++⟩+ ε|−++⟩
)
+β

(
ε|+−−⟩+ i

√
1− ε2|−−−⟩

)
= αi

√
1− ε2|+++⟩+αε|−++⟩+βε|+−−⟩+β i

√
1− ε2|−−−⟩

= αi
√

1− ε2|+++⟩+βε|+−−⟩+αε|−++⟩+β i
√

1− ε2|−−−⟩.

Now, we measure the parity of adjacent qubits in the X-basis (i.e., whether the num-
ber of |−⟩’s are even or odd). We get:

• parity(q2,q1) = 0 and parity(q1,q0) = 0 with probability∣∣∣αi
√

1− ε2
∣∣∣2 + ∣∣∣β i

√
1− ε2

∣∣∣2 = |α|2 (1− ε
2)+ |β |2 (1− ε

2)
=
(
|α|2 + |β |2

)(
1− ε

2)
= 1− ε

2,

and the state collapses to

A
(

αi
√

1− ε2|+++⟩+β i
√

1− ε2|−−−⟩
)
= α|+++⟩+β |−−−⟩,

where A = 1/i
√

1− ε2 is a normalization constant. We see that the resulting
state is already corrected, so we do not need to do anything further to correct
the error. That is, the measurement fixed the error.

• parity(q2,q1) = 1 and parity(q1,q0) = 0 with probability

|βε|2 + |αε|2 = |α|2|ε|2 + |β |2|ε|2

=
(
|α|2 + |β |2

)
|ε|2

= |ε|2,

and the state collapses to

B(βε|+−−⟩+αε|−++⟩) = β |+−−⟩+α|−++⟩,

where B = 1/ε is a normalization constant. To correct this state, we apply (Z⊗
I⊗ I) so that it becomes
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β |−−−⟩+α|+++⟩= α|+++⟩+β |−−−⟩,

so we have corrected the error.
• parity(q2,q1) = 0 and parity(q1,q0) = 1 with probability 0.
• parity(q2,q1) = 1 and parity(q1,q0) = 1 with probability 0.

To summarize, when we have a partial phase flip, the measurement forces it to be
corrected or to become a complete phase flip, which we can correct by applying a Z
gate. The quantum circuit for this procedure is shown below:

|q0〉 H • H Z

|q1〉 H • • H Z

|q2〉 H • H Z

|0〉 • • |0〉

|0〉 • • |0〉

Simulating this in Quirk (https://bit.ly/3e7dNQR):

The top three qubits are |0L⟩ = |+++⟩, and the bottom two qubits will be used to
calculate the parities. In the first column of the circuit, we can visualize the states
on Bloch spheres and confirm that we have |+++⟩. Next, we simulate an error by
applying a phase-flip Zt , with t varying from 0 to 360◦, to the middle qubit. Now,
another set of Bloch spheres confirms that the middle qubit has changed. We want
to correct this so that we end up with |+++⟩ again. The rest of our circuit is the
same as the bit-flip circuit, except we apply Hadamard gates before and after it so
that we work in the X-basis. In the output, we see that we have restored |+++⟩.
We can move the phase flip to any of the top three qubits, and our error-correcting
circuit will restore the state to |+++⟩. Note we also need to reset the ancilla qubits.

Exercise 4.37. In this exercise, we will work through an exercise for encoding a qubit in the phase-
flip code. Say we have a single qubit in the state

|ψ⟩= α|0⟩+β |0⟩.

We want to encode this using the phase-flip code. we add two more qubits to our system, all initially
in |0⟩, so our three qubits are in the state

|ψ00⟩= (α|0⟩+β |1⟩) |00⟩= α|000⟩+β |100⟩.

https://bit.ly/3e7dNQR


200 4 Multiple Quantum Bits

Starting with this state, we apply the following quantum circuit:

|0〉 H H

|0〉 H = H

|ψ〉 • • H • H

Show the final state, after the circuit, is

α|+++⟩+β |−−−⟩= α|0L⟩+β |1L⟩.
Exercise 4.38. Consider the following quantum circuit:

|a〉 H • H

|b〉 H • H

|0〉
Show that...

(a) If |a⟩= |+⟩ and |b⟩= |+⟩, find the resulting state at the end of the circuit.
(b) If |a⟩= |+⟩ and |b⟩= |−⟩, find the resulting state at the end of the circuit.
(c) If |a⟩= |−⟩ and |b⟩= |+⟩, find the resulting state at the end of the circuit.
(d) If |a⟩= |−⟩ and |b⟩= |−⟩, find the resulting state at the end of the circuit.
(e) Using your answers to the previous parts, explain why this circuit calculates the parity in the

X-basis.

Exercise 4.39. Using two copies of the circuit from Exercise 4.38, we can calculate the parity of
adjacent qubits in the X-basis using the following circuit:

|a〉 H • H |a〉

|b〉 H • H H • H |b〉

|c〉 H • H |c〉

|0〉 |a⊕ b〉

|0〉 |b⊕ c〉

Explain how this is equivalent to the circuit from the text.

Exercise 4.40. A logical qubit is in the state

α|0L⟩+β |1L⟩,

where |0L⟩ and |1L⟩ are encoded using the phase-flip code:

|0L⟩= |+++⟩, |1L⟩= |−−−⟩.

That is, the physical qubits are in the state

α|+++⟩+β |−−−⟩.

Now, the left physical qubit suffers a slight phase flip, causing the state to become

α

(
i
√

1− ε2|+++⟩+ ε|−++⟩
)
+β

(
i
√

1− ε2|−−−⟩+ ε|+−−⟩
)
.

To detect/correct this, you measure the parity of the left two qubits and the parity of the right two
qubits, both in the X-basis.
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(a) What is the probability that both parities are even? If this probability is nonzero, say you
get this outcome. What is the state after the measurement? What gate(s) should you apply to
correct the error, if any?

(b) What is the probability that the parity of the left two qubits is odd and the parity of the right
two qubits is even? If this probability is nonzero, say you get this outcome. What is the state
after the measurement? What gate(s) should you apply to correct the error, if any?

(c) What is the probability that the parity of the left two qubits is even and the parity of the right
two qubits is odd? If this probability is nonzero, say you get this outcome. What is the state
after the measurement? What gate(s) should you apply to correct the error, if any?

(d) What is the probability that both parities are odd? If this probability is nonzero, say you get
this outcome. What is the state after the measurement? What gate(s) should you apply to
correct the error, if any?

4.7.4 Shor Code

We can combine the phase-flip code and bit-flip code to correct both kinds of errors.
We begin with the phase-flip code, so we can correct phase-flip errors. That is,

|0L⟩= |+++⟩

=
1√
2
(|0⟩+ |1⟩) 1√

2
(|0⟩+ |1⟩) 1√

2
(|0⟩+ |1⟩)

=
1

23/2 (|0⟩+ |1⟩)(|0⟩+ |1⟩)(|0⟩+ |1⟩) .

Then, so we can correct bit-flip errors, we replace each of the three qubits with three
qubits using the bit-flip encoding, i.e., |0⟩ → |000⟩ and |1⟩ → |111⟩, so that each
logical qubit is encoded using nine physical qubits:

|0L⟩=
1

23/2 (|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩) .

Similarly, we begin with |1L⟩= |−−−⟩ and replace |0⟩ → |000⟩ and |1⟩ → |111⟩:

|1L⟩=
1

23/2 (|000⟩− |111⟩)(|000⟩− |111⟩)(|000⟩− |111⟩) .

Then, the state of a general logical qubit is

α|0L⟩+β |1L⟩=
α

23/2 (|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

+
β

23/2 (|000⟩− |111⟩)(|000⟩− |111⟩)(|000⟩− |111⟩) .

This encoding is called the Shor code, and it is named after its inventor, Peter Shor,
who proposed it in 1995 and, by doing so, invented quantum error correction. It uses
nine physical qubits to encode one logical qubit. A way to create this encoding is
given in Exercise 4.41.
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Exercise 4.41. A qubit can be encoded using the Shor code by first encoding it in the three-qubit
phase-flip code (Exercise 4.37) followed by encoding each of the three qubits using the three-qubit
bit-flip code (Exercise 4.35), which results in nine qubits total. Applying these encodings one after
another, a method called concatenation, yields the following circuit:

|0〉
|0〉

|0〉 H • H •
|0〉
|0〉 =

|0〉 H • H •
|0〉
|0〉

|ψ〉 • H • • H •

In the above circuit, the large dashed box to the left is the phase-flip encoding, which turns
|0⟩ → |+++⟩ and |1⟩ → |−−−⟩. Then, the three dashed boxes in the middle are each the bit-flip
encoding, which turns |0⟩ → |000⟩ and |1⟩ → |111⟩.

If the initial state of the circuit is |ψ00000000⟩, where |ψ⟩= α|0⟩+β |1⟩, show that:
(a) The state of the circuit after the first column (after the CNOT with two targets) is

α|000⟩|000⟩|000⟩+β |100⟩|100⟩|100⟩.

(b) The state of the circuit after the second column (after the Hadamard gates) is

α√
2
(|000⟩+ |100⟩)(|000⟩+ |100⟩)(|000⟩+ |100⟩)

+
β√

2
(|000⟩− |100⟩)(|000⟩− |100⟩)(|000⟩− |100⟩) .

(c) The final state of the circuit is

α

23/2 (|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

+
β

23/2 (|000⟩− |111⟩)(|000⟩− |111⟩)(|000⟩− |111⟩) .

This is precisely α|0L⟩+β |1L⟩.

Let us see how to correct bit flips and phase flips using the Shor code, beginning
with bit flips. First, remember that the qubits are ordered q8q7 . . .q0. Say q8 and q3
both experience complete bit flips. Then, the state of the system is

α

23/2 (|100⟩+ |011⟩)(|001⟩+ |110⟩)(|000⟩+ |111⟩)

+
β

23/2 (|100⟩− |011⟩)(|001⟩− |110⟩)(|000⟩− |111⟩) .

To detect this, we measure the parities of adjacent qubits within each triplet. In this
example, we would get:
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left triplet: parity(q8,q7) = 1, parity(q7,q6) = 0,
middle triplet: parity(q5,q4) = 0, parity(q4,q3) = 1,
right triplet: parity(q2,q1) = 0, parity(q1,q0) = 0.

This tells us that the eighth qubit and third qubit have flipped, so we can apply
X gates to those two qubits to correct them. This also works with partial bit flips.
Measuring the parities of adjacent qubits might collapse the state and correct the
errors, or it might collapse the state into one with full bit flips, which we correct by
applying X gates to the appropriate qubits.

Exercise 4.42. A logical qubit is encoded using nine physical qubits in the Shor code. In each
triplet, you measure the parity of adjacent qubits and get the following results:

left triplet: parity(q8,q7) = 0, parity(q7,q6) = 1,

middle triplet: parity(q5,q4) = 1, parity(q4,q3) = 0,

right triplet: parity(q2,q1) = 1, parity(q1,q0) = 1.

Are there any bit flip errors? If so, which bits flipped, and what can you do to correct them?

Exercise 4.43. Bit flips can be corrected in the Shor code using the following quantum circuit:

|q0〉 • X

|q1〉 • • X

|q2〉 • X

|q3〉 • X

|q4〉 • • X

|q5〉 • X

|q6〉 • X

|q7〉 • • X

|q8〉 • X

|0〉 • • |0〉 • • |0〉 • • |0〉

|0〉 • • |0〉 • • |0〉 • • |0〉

The first third of the circuit measures the parities of adjacent qubits in the top three qubits, correct
any errors, and reset the ancillas. The middle third of the circuit calculates the parities of adjacent
qubits in the next triplet, correcting any errors. Finally, it does the same for the last triplet of qubits.

Using Quirk, simulate this circuit by inserting it into the following circuit (see https://bi
t.ly/3D1kRKI):

https://bit.ly/3D1kRKI
https://bit.ly/3D1kRKI
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The first part of this circuit applies the Hadamard gate to |q8⟩, turning it into |+⟩. Then, it uses
the circuit in Exercise 4.41 to encode this in the Shor code. Then, the X t gates applies a partial bit
flip to one qubit in each triplet. In the middle section, you should add the previously given circuit.
Although there is no reset feature in Quirk, you can use the postselection tool as a workaround. In
Quirk, it is drawn as the outer product |0⟩⟨0|). It measures a qubit in the {|0⟩, |1⟩} basis, and if the
result is |0⟩, the calculation continues. Otherwise, the simulation starts over. For our purposes, it
has the effect of guaranteeing that the ancilla qubit is |0⟩ before proceeding. A true “reset” feature
would allow us to continue with the ancilla as |0⟩ without the risk of restarting the simulation. In
the last section of the circuit, we undo the Shor encoding and Hadamard gate so that all the qubits
are |0⟩ again. Verify that your circuit does this.

Next, let us see how the Shor code also allows us to correct phase flips. Say q3
experiences a complete phase flip. Then, the state of the system is

α

23/2 (|000⟩+ |111⟩)(|000⟩− |111⟩)(|000⟩+ |111⟩)

+
β

23/2 (|000⟩− |111⟩)(|000⟩+ |111⟩)(|000⟩− |111⟩) .

Then, we can measure the “phase parity” of adjacent triplets, i.e., whether the num-
ber of (|000⟩− |111⟩)/

√
2 triplets is even or odd. This is similar to the phase flip

code, where we measured the parity in the X basis to determine if the number of
|−⟩’s was even or odd. How to measure this parity is shown in Exercise 4.44). In
our example, we would get

parity(triplet2, triplet1) = 1, parity(triplet1, triplet0) = 1.

This indicates that the middle triplet needs to be flipped, so we apply the Z gate
to any one of the three qubits in that triplet. That is, we can apply the Z gate to
either q5, q4, or q3, correcting the error. Similarly, when there is a partial phase flip,
if we measure all the phase parities and get zero, the state collapsed and corrected
the error, and if there was a discrepancy in phase parities, we apply a Z gate to the
appropriate triplet to correct it.
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By alternating between correcting bit-flip errors and phase-flip errors, the Shor
code corrects all quantum errors, assuming each triplet experiences at most one bit-
flip error per correction cycle, and at most one triplet experiences a phase-flip error
per correction cycle.

A quantum computer that accumulates errors slowly enough that errors can be
corrected is called fault tolerant. Depending on the error correcting code that is used,
the maximum correctable error rate can vary, and this is an area of active research.
At the time of this writing, a fault tolerant quantum computer does not yet exist, and
one could argue that building one is the “holy grail” of the field.

Exercise 4.44. Consider the following circuit, which computes the phase parity of adjacent triplets
in the Shor code:

|q0〉
|q1〉
|q2〉 • H • H •
|q3〉
|q4〉
|q5〉 • H • • H •
|q6〉
|q7〉
|q8〉 • H • H •
|0〉
|0〉

Comparing this circuit with Exercise 4.41, the first two layers of this circuit partially unencode
the qubit. Then the middle four layers (the CNOTs) calculate the parity of adjacent triplets in two
ancilla qubits. Then, the final two layers reencode the qubit. In this exercise, we will work through
this for an example.

(a) A qubit α|0L⟩+β |1L⟩ is encoded using the nine-qubit Shor code, but a physical qubit in the
middle triplet experienced a phase flip, so the state of the nine qubits is

α

23/2 (|000⟩+ |111⟩)(|000⟩− |111⟩)(|000⟩+ |111⟩)

+
β

23/2 (|000⟩− |111⟩)(|000⟩+ |111⟩)(|000⟩− |111⟩) .

Show that after the first two columns of the circuit (the CNOTs with two targets and the
Hadamards), the state of the nine qubits is

α|000100000⟩+β |100000100⟩.

(b) Show that after the middle layers of the circuit (CNOTs), the ancilla qubits now store the
phase parities of adjacent triplets.

(c) Show that at the end of the circuit, the state of the nine qubits is again
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α

23/2 (|000⟩+ |111⟩)(|000⟩− |111⟩)(|000⟩+ |111⟩)

+
β

23/2 (|000⟩− |111⟩)(|000⟩+ |111⟩)(|000⟩− |111⟩) .

(d) From the parities in (b), what gate should be applied to fix the phase flip, and to which qubit?

Exercise 4.45. Construct a quantum circuit that corrects when a triplet experiences a phase flip
error in the Shor code. To check your answer, simulate your circuit in Quirk by inserting it into the
following circuit (see https://bit.ly/3kmbTAm):

The first part of this circuit applies the Hadamard gate to |q8⟩, turning it into |+⟩. Then, it uses the
circuit in Exercise 4.41 to encode this in the Shor code. Then, the Zt gates applies a partial bit flip
to one triplet. In the middle section, you should add the previously given circuit. As described in
Exercise 4.43, postselect on |0⟩ as a workaround for resetting the ancilla qubits. In the last section
of the circuit, we undo the Shor encoding and Hadamard gate so that all the qubits are |0⟩ again.
Verify that your circuit does this. Try moving the Zt gate around to different triplets to ensure that
the phase flip is corrected in all instances, as long as at most one triplet experiences a phase flip.

Exercise 4.46. You have a logical qubit encoded in nine physical qubits using the Shor code. Let
us label the qubits q8q7 . . .q0. They are grouped into three triplets (triplet2, triplet1, triplet0).

(a) You begin by detecting bit flip errors. Within each triplet, you measure the parity of adjacent
qubits in the Z-basis. Here are the results:

left triplet: parity(q8,q7) = 1, parity(q7,q6) = 1,

middle triplet: parity(q5,q4) = 0, parity(q4,q3) = 1,

right triplet: parity(q2,q1) = 1, parity(q1,q0) = 0.

Are there any bit flip errors? If so, which bits flipped, and what can you do to correct them?
(b) Next, you measure the parities of adjacent triplets in the H3-basis. Here are the results:

parity(triplet2, triplet1) = 0, parity(triplet1, triplet0) = 1.

Was there a phase flip error? If so, which triplet flipped, and what can you do to correct it?

https://bit.ly/3kmbTAm
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4.8 Summary

The state of multiple qubits is written as as a tensor product. With n qubits, there
are 2n orthonormal basis states, and a general state is a superposition of these basis
states. In a product state, measuring one qubit cannot affect the others, while in an
entangled state, measuring one qubit can affect the other qubits. A quantum gate on
n qubits is a 2n×2n unitary matrix. There are various ways to add binary numbers
on a quantum computer. A universal set of quantum gates can approximate any
quantum gate to any desired precision. Quantum bits can suffer from both bit-flip
and phase-flip errors, but they can be corrected, so building a quantum computer
“only” requires really good qubits, not perfect qubits.





Chapter 5
Quantum Programming

Quantum computing is currently emerging from the research lab onto the market-
place. Many companies are building prototype quantum processors, and although
these devices are not yet good enough for fault-tolerant quantum computation,
they may still have uses. These rudimentary quantum processors are called noisy
intermediate-scale quantum (NISQ) devices, where noisy means they suffer from
too much decoherence to be fault-tolerant, and intermediate-scale means they have
a moderate number of qubits, say roughly fifty to a few hundred. NISQ devices were
used to demonstrate quantum computational supremacy, which we briefly discussed
in Section 1.8.3.

Many companies have made their rudimentary quantum processors available for
people to experiment with. In this chapter, we will learn how to program IBM’s
quantum computers over the internet. This is not an endorsement of their prod-
ucts or services, and other companies have similar tools for programming their own
quantum devices, which you are encouraged to explore on your own. Rather, IBM
has made several of their quantum processors freely available to the public, mak-
ing them a prudent choice for a textbook. Furthermore, after learning one quantum
programming toolkit, it will be easier to learn others, as there are many similarities
across them.

5.1 IBM Quantum

5.1.1 Services

IBM was the first to make their quantum processors available over the internet (over
the “cloud”), and their online platform is called IBM Quantum (formerly called IBM
Quantum Experience). It can be accessed at https://quantum-computing.ibm.c
om. Their smaller quantum processors are available to the public, and access to their
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larger, newer processors is available commercially. When we log in, we first see the
Dashboard:

We can go to the Services page to view a list of quantum processors available to us.
To get to the Services page, we can click on the menu icon in the top-left corner of
the Dashboard, then click “Services:”

This brings us to the Services page:
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On the Services page, we can click the “Systems” tab and then filter by “Your sys-
tems:”

This is the list of quantum processors that are available to us. If we click on a pro-
cessor, such as ibmq manila, we can see more information about it:
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We see that this quantum processor has five qubits arranged in a line. This arrange-
ment, or topology, can affect which quantum gates can be naturally applied. For
example, we can naturally apply CNOT between qubits 0 and 1. If we want to apply
CNOT between qubits 0 and 2, however, we would need to, for example, SWAP
qubits 2 and 1, apply CNOT between 0 and 1, then SWAP 1 back with 2.

5.1.2 Quantum Composer

The Quantum Composer (formerly called Circuit Composer) provides a drag-and-
drop interface for programming quantum circuits. To get to the Quantum Composer,
we can click on the menu icon in the top-left corner and then click “Composer:”

For example, let us program the following quantum circuit:
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|0〉
|0〉

|0〉 H • •

This circuit produces the following state:

|000⟩ H⊗I⊗I−−−−→ 1√
2
(|000⟩+ |100⟩)

CNOT21−−−−→ 1√
2
(|000⟩+ |110⟩)

CNOT20−−−−→ 1√
2
(|000⟩+ |111⟩) .

This state is known as the Greenberger–Horne–Zeilinger state (GHZ state). It is an
entangled state, and we will revisit it in the next chapter. If we measure it, we find
that all the qubits are 0 with probability 1/2 or all 1 with probability 1/2.

Using the Quantum Composer, we can create this circuit by dragging a Hadamard
gate and two CNOT gates onto the circuit:
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To change the control and target of CNOTs, we double-clicked on them and mod-
ified which qubit was the control and which was the target. For example, for
CNOT21, the control and target were set as shown below:

In the Quantum Composer, we also deleted some qubits so that there are only three.
At the bottom of the webpage, the Quantum Composer automatically simulated the
circuit, showing histograms indicating that the circuit yields |000⟩ with probability
50% or |111⟩ with probability 50%, as expected.

To run this on an actual quantum processor, we need to add at least one measure-
ment. Let us measure all three qubits by adding measurement gates to the Quantum
Composer:
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Now, the histograms at the bottom of the screen have changed. Instead of giving
both |000⟩ and |111⟩, we only get one of them. This is because when measuring the
qubits, we only get |000⟩ or |111⟩, not both. The Quantum Composer is choosing
one of them using a pseudo-random number generator. At the top-right corner of the
screen, we can change the “Visualization seed,” which is a number that the pseudo-
random number generator starts with to generate pseudo-random numbers.

5.1.3 Quantum Processor

We can run the quantum circuit on one of IBM’s actual quantum processors. At the
top of the Quantum Composer, there is a button that says “Setup and run.” Clicking
it shows the following menu:

From this menu, we can select the quantum system on which to run the circuit. The
number of shots defaults to 1024, meaning it will run our circuit 1024 times and
return a histogram of the measurement outcomes. Ideally, we expect to get |000⟩
512 times and |111⟩ 512 times. We also see our job limit. Each user is limited to
having five jobs in the queue at a time. Clicking “Run on ibmq xxx” adds our job
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to the queue. We can see its status by clicking the “Jobs” tab on the left side of the
screen:

When it is done, we can click it to see the results. Here is what we got for the
histogram:

Theoretically, we expect 000 or 111, each half the time. Due to a limited number of
shots and decoherence in the quantum processor, however, the results deviated from
our expectations. The results page also shows the actual quantum circuit that was
run, which is called the transpiled circuit:
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That is, it might not be possible to run our original quantum circuit on the device due
to the topology or gate set available to the processor, so the software will transpile
or convert our circuit to an equivalent one that can be physically run.

Exercise 5.1. Using the drag-and-drop Quantum Composer in IBM Quantum, run the following
circuit on one of IBM’s quantum processors:

|0〉 X • |1〉

|0〉 X • |1〉

|0〉 |1〉

(a) Which processor did you use?
(b) Draw the topology of your processor (the arrangement of the qubits and their connections to

each other).
(c) Draw the transpiled circuit.
(d) Draw the resulting histogram showing the probability of each measurement outcome.
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5.1.4 Simulator

Sometimes, it can take a long time for a job to make it through the queue for an
actual quantum processor. Or, the available quantum processors have too few qubits.
In these cases, using a simulator rather than an actual quantum processor may be
favorable. Let us try this for the previous circuit that creates the GHZ state. Clicking
“Setup and run,” let us run the circuit on ibm qasm simulator:

This results in the following histogram:
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Out of the 1024 shots, the simulator measured |000⟩ 493 times and |111⟩ 531 times.
Due to the limited number of shots and the use of a pseudo-random number gen-
erator to simulate the results, the results were not perfectly 50% each, but they are
pretty close.

Exercise 5.2. Simulate the circuit from Exercise 5.1 using ibm qasm simulator. Draw the resulting
histogram showing the probability of each measurement outcome.

5.2 Quantum Assembly Language

5.2.1 OpenQASM

Rather than dragging and dropping quantum gates to create a circuit, they can also
be written using programming languages. We can describe quantum circuits using
OpenQASM, where Open refers to the specification being open or freely available,
and QASM (pronounced kazm) stands for quantum assembly language. Despite the
name “assembly language,” it is really more of a hardware description language
like Verilog (see Section 1.3), where we defined registers and wires, listed logic
gates with their inputs and outputs, and defined modules/functions. A document
describing OpenQASM is available at https://arxiv.org/abs/1707.03429.

Here is an example of a simple OpenQASM program:

OPENQASM 2.0;

qreg q[3];
creg c[3];

U(pi,0,pi) q[0];
CX q[0], q[1];

measure q -> c;

https://arxiv.org/abs/1707.03429
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The first line specifies that it is an OpenQASM program, version 2.0. Then we define
a quantum register or array named q consisting of 3 qubits, |q2⟩|q1⟩|q0⟩. All of these
qubits are initially |0⟩, so q is initially |000⟩. This is followed by a classical register
named c consisting of 3 bits, also indexed c2c1c0, and all these bits are initially 0.
Next, we apply a one-qubit quantum gate U(pi,0,pi) to qubit q[0], where the
one-qubit gate is parameterized as

U(θ ,φ ,λ ) =

(
e−i(φ+λ )/2 cos(θ/2) −e−i(φ−λ )/2 sin(θ/2)
ei(φ−λ )/2 sin(θ/2) ei(φ+λ )/2 cos(θ/2)

)
.

With appropriate choices for the angles, any one-qubit gate can be written this way,
up to a global phase. Technically, this is a rotation about the z-axis of the Bloch
sphere by λ , followed by a rotation about the y-axis by θ , followed by another
rotation about the z-axis, but by φ . In this example, when (θ ,φ ,λ ) = (π,0,π), we
get

U(π,0,π) =
(

e−iπ/2 cos(π/2) −eiπ/2 sin(π/2)
e−iπ/2 sin(π/2) eiπ/2 cos(π/2)

)
=

(
0 −i
−i 0

)
=−i

(
0 1
1 0

)
=−iX ≡ X ,

where in the last step, ≡ means “equivalent to” because the global phase of −i can
be dropped. So, this gate transforms q[0] from |000⟩ to −i|001⟩, but the global
phase can be ignored, so it is just |001⟩. Next, CNOT (CX) is applied with q[0]

as the control and q[1] as the target, transforming the state from |001⟩ to |011⟩.
Finally, q is measured, and the resulting bits are placed in the classical register c.
So, c[2] = 0, c[1] = 1, and c[0] = 1.

U(θ ,φ ,λ ) and CX are the only two gates that OpenQASM has built-in because
they form a universal gate set. That is, recall from Section 4.6 that the set {CNOT,
all single-qubit gates} is universal for quantum computing. We can, however, define
our own gates so that they are easier to use. Rewriting our previous code,

OPENQASM 2.0;

// Define the Pauli X gate.
gate x a
{

U(pi,0,pi) a;
}

qreg q[3];
creg c[3];

x q[0];
CX q[0], q[1];

measure q -> c;
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Comments are preceded by two slashes //, and names must start with a lowercase
letter, so our gate is called x, not X.

5.2.2 Quantum Experience Standard Header

Rather than writing all one-qubit gates in the form U(θ ,φ ,λ ) or defining them our-
selves, it would be convenient if commonly used quantum gates like X , Y , Z, H,
and others were predefined. Thankfully, these and many of the gates used by IBM
Quantum are defined in the library qelib1.inc, called the IBM Quantum Experi-
ence standard header, which we can include in OpenQASM. So our previous code
can be written as

OPENQASM 2.0;
include "qelib1.inc";

qreg q[3];
creg c[3];

x q[0]
cx q[0], q[1];

measure q -> c;

Note CX has been replaced by cx, since we are now using CNOT defined in the
Quantum Experience standard header instead of the CNOT that is native to Open-
QASM.

Exercise 5.3. Recall OpenQASM parameterizes an arbitrary single-qubit gate as

U(θ ,φ ,λ ) =

(
e−i(φ+λ )/2 cos(θ/2) −e−i(φ−λ )/2 sin(θ/2)
ei(φ−λ )/2 sin(θ/2) ei(φ+λ )/2 cos(θ/2)

)
.

For convenience, let us define:

u1(λ ) =U(0,0,λ ),

u2(φ ,λ ) =U(π/2,φ ,λ ),

u3(θ ,φ ,λ ) =U(θ ,φ ,λ ).

Now go to https://arxiv.org/abs/1707.03429 and download a PDF of the preprint
that specifies OpenQASM. Go to Section 3.1 on the “Quantum Experience standard header.” In
terms of u1, u2, u3, and CNOT (CX), what is

(a) The H gate?
(b) The T † gate?
(c) A rotation about the x-axis by angle θ?
(d) The controlled-Z gate?
(e) The Toffoli gate?

https://arxiv.org/abs/1707.03429
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5.2.3 OpenQASM in IBM Quantum

Besides dragging and dropping quantum gates, IBM Quantum also supports pro-
gramming using OpenQASM. From the previous circuit for the GHZ state, we can
go to the menu and select “View” and then “Code Editor:”

Then, the Code Editor will appear on the right side of the screen:

5.2.4 Quantum Adder

Now, let us write some OpenQASM code to add 1110+ 1011 = 11001 using the
quantum ripple-carry adder in Section 4.5.6 and simulate it in IBM Quantum Expe-
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rience. We can define our own quantum gates to implement the sum S, carry C, and
inverse carry C†. Note s is the S gate, so we cannot use it as an identifier/name.

OPENQASM 2.0;

// Include standard gates from IBM Quantum Experience.
include "qelib1.inc";

// Define the quantum sum gate.
gate sum cin, a, b
{

cx a, b;
cx cin, b;

}

// Define the quantum carry gate.
gate carry cin, a, b, cout
{

ccx a, b, cout;
cx a, b;
ccx cin, b, cout;

}

// Define the inverse of the quantum carry gate.
gate carrydg cin, a, b, cout
{

ccx cin, b, cout;
cx a, b;
ccx a, b, cout;

}

// Declare the quantum registers.
qreg c[4];
qreg a[4];
qreg b[5];

// Declare the classical registers.
creg bc[5];

// Set the input states by applying X gates.
x a[1];
x a[2];
x a[3]; // a = 1110
x b[0];
x b[1];
x b[3]; // b = 1011

// Add the numbers so that |a>|b> becomes |a>|a+b>.
carry c[0], a[0], b[0], c[1];
carry c[1], a[1], b[1], c[2];
carry c[2], a[2], b[2], c[3];
carry c[3], a[3], b[3], b[4];
cx a[3], b[3];
sum c[3], a[3], b[3];
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carrydg c[2], a[2], b[2], c[3];
sum c[2], a[2], b[2];
carrydg c[1], a[1], b[1], c[2];
sum c[1], a[1], b[1];
carrydg c[0], a[0], b[0], c[1];
sum c[0], a[0], b[0];

// Measure the sum and put it in the classical register.
measure b -> bc;

In the Quantum Composer, if we click the button on the left to view the “Com-
poser files,” there is a button to upload an OpenQASM circuit:

Uploading it, we get a new circuit:
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The circuit is too tall to include all of it in the above picture. Also, the histograms at
the bottom of the circuit are not available because our circuit uses too many qubits.
If we look at the Bloch spheres, however, at the end of the circuit, we see that
b4b3b2b1b0 = 11001, so the addition circuit works, as expected. We can also run the
circuit on the ibm qasm simulator backend, which yields the following results:

Again, the sum is 11001, as expected. Finally, we can run it on an actual quantum
processor, yielding the following:

The histogram cannot fit all the results. If we click the three dots in the upper-right
corner of the histogram, we can download the results as a CSV file. Here’s what we
get:

Computational basis states,Probabilities
00000,27.832
00001,16.113
00010,8.398
00011,4.199
00100,7.031
00101,3.125
00110,1.27
00111,1.367
01000,5.176
01001,2.246
01010,1.367
01011,0.391
01100,1.074
01101,0.586
01110,0.098
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01111,0.293
10000,7.324
10001,3.711
10010,2.246
10011,0.879
10100,1.758
10101,0.781
10110,0.488
10111,0.293
11000,1.074
11001,0.488
11011,0.195
11100,0.098
11101,0.098

So, out of 1024 shots, the probability of getting the correct answer of 11001 is
0.488%, or less than half a percent. That is quite bad. To understand why, let us look
at the transpiled circuit. It is so long that we split it across six images:
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Since the transpiled circuit is so long, our qubits are noisy, and we do not yet have
error correction, the errors just kept accumulating. It is unsurprising, then, that our
histogram was so wrong.

Exercise 5.4. Consider the following quantum circuit:

|0〉 • H •

|0〉 •

|0〉 H • Z

(a) Program this circuit using OpenQASM.
(b) Import your program into the Quantum Composer.
(c) Run your circuit on an actual quantum device. Which device did you choose, and what results

did you get?
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5.3 Qiskit

5.3.1 Quantum Composer

Besides the Quantum Composer and OpenQASM editor, IBM has provided another
way to program their quantum processors. It is called Qiskit, where QIS stands for
quantum information science, and kit refers to a software development kit (SDK).
Qiskit is pronounced “kiz kit,” although some variants exist, like, “quiz kit” and
“kiss kit.” Qiskit is not a programming language, but is rather a toolkit or package
for the Python programming language. Qiskit is the most powerful way to program
IBM’s quantum computers because it provides more functionality than the other
approaches, and it also allows users to use Python’s vast network of packages and
libraries. More information about Qiskit is available at https://qiskit.org.

You can use Qiskit inside IBM Quantum. To view a circuit as Qiskit code, in the
Quantum Composer, just select “Qiskit” in the Code Editor. For the GHZ state, we
get the following:

https://qiskit.org
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Here is the code again:

from qiskit import QuantumRegister, ClassicalRegister,
↪→ QuantumCircuit

from numpy import pi

qreg_q = QuantumRegister(3, 'q')
creg_c = ClassicalRegister(3, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)

circuit.h(qreg_q[2])
circuit.cx(qreg_q[2], qreg_q[1])
circuit.cx(qreg_q[2], qreg_q[0])
circuit.measure(qreg_q[0], creg_c[0])
circuit.measure(qreg_q[1], creg_c[1])
circuit.measure(qreg_q[2], creg_c[2])

The first line imports from the Qiskit package functions to define quantum registers,
classical registers, and quantum circuits. In the second line, we import from the
numpy package the number pi. Although it is not used in this circuit, it is used in
many circuits, so it is included here for convenience.

In the next block of lines, the code defines a quantum register of length 3, la-
beled q, with the variable name qreg q. Then, the three qubits would be qreg q[0],
qreg q[1], and qreg q[2]. Similarly, the next line defines a classical register of
length 3, labeled c, with the variable name creg c, so the bits are creg c[0],
creg c[1], and creg c[2]. After that, a quantum circuit is created containing the
quantum and classical registers, and we name it circuit.

Finally, in the last block of 6 lines, we add a Hadamard gate to our quantum
circuit, and it is applied to qubit qreg q[2]. Then, we add a CNOT (CX) gate, with
qreg q[2] as the control and qreg q[1] as the target. Then, we add another CNOT
gate, again with qreg q[2] as the control, but now with qreg q[0] as the target. In
the final three lines, we add measurements to the circuit, and the result of measuring
qubit qreg q[0] is placed in the classical bit creg c[0], and so forth.

5.3.2 Quantum Lab

In the Quantum Composer, the Qiskit code is “read only,” so it cannot be modified.
To modify it, we click “Open in Quantum Lab.” This opens a Jupyter notebook,
where Python code can be executed and the results displayed in an interactive man-
ner:
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The first cell contains mostly the code from before, but now it starts and ends with
some additional code:

from ibm_quantum_widgets import CircuitComposer

[same code as before]

editor = CircuitComposer(circuit=circuit)
editor

The first line loads a package that will allow us to view the Quantum Composer from
within the Quantum Lab. The second-to-last line creates the Quantum Composer as
an object named editor, and the last line displays the editor. We can run this cell by
selecting the cell and clicking the ▷ Run button, or by pressing Shift+Enter on your
keyboard. When we do, we get the following:
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After running the cell, a second, empty cell appears below. We can put any Python
code we would like. For example, we can draw the circuit without using the entire
Quantum Composer using the draw function within QuantumCircuit to draw a
picture of our quantum circuit:

QuantumCircuit.draw(circuit)

The output of this is
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As another example, we can print the OpenQASM code for the quantum circuit:

print(circuit.qasm())

The output of this is

OPENQASM 2.0;
include "qelib1.inc";
qreg q[3];
creg c[3];
h q[2];
cx q[2],q[1];
cx q[2],q[0];
measure q[0] -> c[0];
measure q[1] -> c[1];
measure q[2] -> c[2];

5.3.3 Simulator

Now, let us simulate this quantum circuit. The simulators are contained in a Qiskit
library called Aer, which we can import and then view the backends:

# Import the Qiskit Aer library
from qiskit import Aer

# View the Aer backends, which are all simulators.
Aer.backends()

The output of this is:

[AerSimulator('aer_simulator'),
AerSimulator('aer_simulator_statevector'),
AerSimulator('aer_simulator_density_matrix'),
AerSimulator('aer_simulator_stabilizer'),
AerSimulator('aer_simulator_matrix_product_state'),
AerSimulator('aer_simulator_extended_stabilizer'),
AerSimulator('aer_simulator_unitary'),
AerSimulator('aer_simulator_superop'),
QasmSimulator('qasm_simulator'),
StatevectorSimulator('statevector_simulator'),
UnitarySimulator('unitary_simulator'),
PulseSimulator('pulse_simulator')]

Let us use qasm simulator as the backend and execute the circuit on it:

# Choose the qasm_simulator backend.
backend = Aer.get_backend('qasm_simulator')

# Import the Qiskit execute function.
from qiskit import execute

# Execute the quantum circuit on the backend, creating a job.
job = execute(circuit, backend)



5.3 Qiskit 233

We can use the job monitor function to see if the job is completed. It needs to be
imported from Qiskit.

# Check the status of the job.
from qiskit.tools.monitor import job_monitor
job_monitor(job)

If the job has not yet run, the job monitor will periodically update itself. Once the
job is done, we can get a count of the results and print them:

# Get a count of the results.
count = job.result().get_counts()

# Print the counts.
print(count)

The output of this is

{'000': 497, '111': 527}

We expect that each result should appear 512 times (half of 1024 shots), but just like
flipping a coin 1024 times may not yield heads 512 times and tails 512 times, there
is some deviation because of statistics, not because of errors. This is a simulation,
not actual noisy quantum hardware.

We can also plot a histogram of the counts by importing the qiskit.visualizations
package and calling the plot histogram function:

# Import visualizations from Qiskit.
from qiskit.visualization import *

# Plot the count as a histogram.
plot_histogram(count)

This outputs the following image:
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5.3.4 Quantum Processor

Now, let us run the quantum circuit on one of IBM’s actual quantum processors.
First, we need to load our IBM Quantum account to see what quantum processors
are available to us:

# Import the Qiskit IBMQ library.
from qiskit import IBMQ

# Load our IBMQ account.
provider = IBMQ.load_account()

# List our backends.
provider.backends()

This prints the quantum processors that are available to us, which includes the public
ones and any that we have paid access to. The output is

[<IBMQSimulator('ibmq_qasm_simulator') from IBMQ(hub='ibm-q',
↪→ group='open', project='main')>,

<IBMQBackend('ibmqx2') from IBMQ(hub='ibm-q', group='open',
↪→ project='main')>,

<IBMQBackend('ibmq_16_melbourne') from IBMQ(hub='ibm-q',
↪→ group='open', project='main')>,

<IBMQBackend('ibmq_vigo') from IBMQ(hub='ibm-q', group='open
↪→ ', project='main')>,

<IBMQBackend('ibmq_ourense') from IBMQ(hub='ibm-q', group='
↪→ open', project='main')>,

<IBMQBackend('ibmq_valencia') from IBMQ(hub='ibm-q', group='
↪→ open', project='main')>,

<IBMQBackend('ibmq_armonk') from IBMQ(hub='ibm-q', group='
↪→ open', project='main')>,

<IBMQBackend('ibmq_athens') from IBMQ(hub='ibm-q', group='
↪→ open', project='main')>,

<IBMQBackend('ibmq_santiago') from IBMQ(hub='ibm-q', group='
↪→ open', project='main')>]

As before, let us pick a particular hardware backend and execute our circuit. We have
previously imported the necessary functions and libraries, so we can just execute the
commands:

# Choose a quantum processor as the backend.
backend = provider.get_backend('ibmq_athens')

# Execute the job.
job = execute(circuit, backend)

Again, we can use the job monitor function to see if the job is completed. It is
already imported, so we do not need to import it again:

job_monitor(job)

Once it has finished, we can get a count of the results, print them, and print a his-
togram:
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count = job.result().get_counts()
print(count)
plot_histogram(count)

The output is

{'000': 499, '001': 7, '010': 8, '011': 13, '100': 1, '101':
↪→ 22, '110': 17, '111': 457}

Most of the time, the result of the quantum circuit is 000 or 111, but due to decoher-
ence, some other results are also obtained.

Exercise 5.5. In IBM Quantum, go to the Quantum Lab through the menu:

In the Quantum Lab, create a new Jupyter notebook for Qiskit (the arrow below indicates which
button to click):

The notebook should be blank. Starting with this, import the necessary Qiskit libraries and func-
tions and create the following quantum circuit:
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|0〉 S H T H

|0〉 H •

Note you should add measurements at the end of the circuit.
(a) Simulate the circuit using qasm simulator. What histogram of results do you get?
(b) Run it on a sufficiently large quantum processor. Which processor did you choose? What

histogram of results did you get?

5.4 Other Quantum Programming Languages

OpenQASM and Qiskit were both developed by IBM to work with their quantum
devices. They are not the only options for quantum programming, however. Here
are a few others, which you are free to explore on your own, and there are more
beyond this list:

• Braket is Amazon’s quantum computing platform, and they have their own
Python software development kit for programming the devices on their plat-
form.

• Cirq is Google’s Python software library for programming their quantum com-
puters.

• Microsoft developed a programming language called Q# (pronounced “Q-
sharp”) specifically for programming quantum computers.

• Quil is a quantum “instruction set architecture” made by Rigetti for program-
ming its quantum computers. It is similar to OpenQASM. PyQuil is a library
for programming Quil in Python.

5.5 Summary

Quantum computing is progressing from an academic research interest to a nascent
industry, and the existence of this chapter on quantum programming is evidence of
this. Actual quantum devices are being developed, and the tools described in this
chapter provide an introduction for how to use them. We will continue using IBM
Quantum for the rest of this textbook as we learn about more advanced protocols
and algorithms.



Chapter 6
Entanglement and Quantum Protocols

In this chapter, we will explore entanglement in greater detail. We will see that if
two qubits are entangled, measuring one affects the other, but there are limits to how
quickly one can communicate using this behavior. We will see that if two people,
Alice and Bob, share entangled qubits, they can exploit this entanglement to send
information to each other using various protocols. With superdense coding, Alice
can send one qubit to Bob, but Bob will be able to discern two classical bits worth
of information. With quantum teleportation, Alice will be able to teleport the state
of a qubit to Bob by only sending him classical information. We will also see a
quantum protocol that does not use entanglement: quantum key distribution, where
Alice and Bob will be able to agree on a secret key or code, and the laws of quantum
mechanics prevent a third party from learning the key.

6.1 Measurements

In Section 4.3, we learned about product states, which can be factored into the tensor
product of single-qubit states, and entangled states, which could not. For example,

1
2
(|00⟩− |01⟩+ |10⟩− |11⟩) = 1√

2
(|0⟩+ |1⟩)︸ ︷︷ ︸
|+⟩

⊗ 1√
2
(|0⟩− |1⟩)︸ ︷︷ ︸
|−⟩

= |+⟩⊗ |−⟩
= |+⟩|−⟩

is a product state, and ∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩)

is an entangled state.

237
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6.1.1 Product States

Now, if we measure a single qubit in a product state, it does not affect the other
qubit. For example, if we measure the left qubit of |+⟩|−⟩, we get |0⟩ or |1⟩, each
with probability 1/2. Thus, the resulting states are |0⟩|−⟩ or |1⟩|−⟩. The right qubit
remains |−⟩, unaltered by the measurement of the left qubit. A product state has no
entanglement.

6.1.2 Maximally Entangled States

If we measure a single qubit in an entangled state, it can affect the other qubits. For
example, consider the entangled state |Φ+⟩= (|00⟩+ |11⟩)/

√
2. If we measure the

left qubit, we get |0⟩ or |1⟩, each with probability 1/2, and the state collapses to |00⟩
or |11⟩, respectively. So, if we measure the left qubit and get |0⟩, we know that the
right qubit is also in the state |0⟩, and similarly, if we measures the left qubit and get
|1⟩, we know that the right qubit is also in the state |1⟩.

This is another way to identify entanglement. A measurement of one qubit affects
the other qubit.

In this example, |Φ+⟩ has the maximum amount of entanglement, since mea-
suring one qubit completely determines what the other qubit will be. That is, if we
measure the left qubit and get |0⟩, we know with certainty that a measurement of
the second qubit will also yield |0⟩. The same holds for |1⟩. We say such entangled
states are maximally entangled.

With two qubits, there are four maximally entangled states. They are the Bell
states: ∣∣Φ+

〉
=

1√
2
(|00⟩+ |11⟩) ,∣∣Φ−〉= 1√

2
(|00⟩− |11⟩) ,∣∣Ψ+

〉
=

1√
2
(|01⟩+ |10⟩) ,∣∣Ψ−〉= 1√

2
(|01⟩− |10⟩) .

6.1.3 Partially Entangled States

Now, consider the following state of two qubits:
√

3
2
√

2
|00⟩+

√
3

2
√

2
|01⟩+

√
3

4
|10⟩+ 1

4
|11⟩.
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This state is entangled because it cannot be factored into the tensor product of single-
qubit states (see Exercise 6.1). If we measure only the left qubit, we get

• 0 with probability 3/4, and the state collapses to

1√
2
(|00⟩+ |01⟩) = |0⟩ 1√

2
(|0⟩+ |1⟩) .

• 1 with probability 1/4, and the state collapses to

√
3

2
|10⟩+ 1

2
|11⟩= |1⟩

(√
3

2
|0⟩+ 1

2
|1⟩
)
.

We see that measuring the left qubit does affect the right qubit because in one case,
the right qubit collapses to (|0⟩+ |1⟩)/

√
2, while in the other case, the right qubit

collapses to (
√

3|0⟩+ |1⟩)/2. So, there is entanglement. Next, if we measure the
right qubit, we may get 0 or 1, with probabilities 50:50 or 0.75:0.25, depending on
which state the qubit was in. So, even though measuring the left qubit affected the
right qubit, it did not completely determine what a measurement of the right qubit
would yield. Since we do not know exactly what the right qubit will be, the original
state is not maximally entangled. We say it is partially entangled.

Various ways to quantify the amount of entanglement have been proposed, called
entanglement measures. They all agree that product states have no entanglement,
and they largely agree on which states are maximally entangled. They disagree on
the degree to which partially entangled states are entangled. This is an area of active
research and is beyond the scope of this textbook.

Exercise 6.1. Using the techniques from Section 4.3, show that
√

3
2
√

2
|00⟩+

√
3

2
√

2
|01⟩+

√
3

4
|10⟩+ 1

4
|11⟩

cannot be factored into the tensor product of single-qubit states.

Exercise 6.2. Consider the following state of two qubits:
√

3
2
√

2
|00⟩+ 1

2
√

2
|01⟩+ 1

2
√

2
|10⟩+

√
3

2
√

2
|11⟩

If you measure the left qubit, what outcomes can you get, what are the corresponding probabilities
of those outcomes, and what does the state collapse to for each outcome? Is this state a product
state, partially entangled state, or maximally entangled state?

Exercise 6.3. Consider the following state of two qubits:

1√
2
(|01⟩+ |10⟩) .

If you measure the left qubit, what outcomes can you get, what are the corresponding probabilities
of those outcomes, and what does the state collapse to for each outcome? Is this state a product
state, partially entangled state, or maximally entangled state?
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6.2 Bell Inequalities

6.2.1 EPR Paradox and Local Hidden Variables

In 1935, Einstein, Podolsky, and Rosen (EPR) published a paper where they took
entangled measurements a step further. Einstein is famous for his Theory of Relativ-
ity, among other breakthroughs, and one idea that he pioneered was that the speed
of light acted as a universal speed limit, that nothing can travel through space faster
than light. This notion that no influence can propagate faster than light is called
locality. The EPR paradox uses locality to question the meaning of quantum me-
chanics.

As a modern take on the EPR experiment, we take two qubits and prepare them
in the |Φ+⟩ state (such as by starting with |00⟩, applying H⊗ I to get |+⟩|0⟩, and
then applying CNOT to get |Φ+⟩). Now, we separate the two qubits so that two
scientists, conventionally named Alice and Bob (A and B), each have one qubit:

1√
2
(|00〉+ |11〉)

Alice Bob

Now, say Alice measures her qubit, and then Bob measures his qubit so quickly
after Alice’s measurement that any influence from Alice’s qubit would have to travel
faster than light in order to affect Bob’s qubit. Alice and Bob can be sufficiently far
apart to make this feasible.

According to the laws of quantum mechanics, whenever Alice measures |0⟩, Bob
should also measure |0⟩, since the moment Alice measures |0⟩, the state of the qubits
is now |00⟩. The same goes for |1⟩ and |1⟩. EPR proposed that for this to be true,
either Alice’s measurement was able to influence Bob’s measurement faster than
light, or the measurement outcomes were predetermined by some hidden variable
that quantum mechanics did not account for, meaning quantum mechanics was in-
complete. EPR’s proposal became known as the EPR paradox.

EPR considered the former option absurd, and Einstein even called the faster-
than-light collapse of the quantum state “spooky action-at-a-distance” to deride it.
EPR advocated the latter option, that the measurement outcomes are determined
before the measurement in a way that quantum mechanics does not account for. This
belief is called realism, that the qubits have actual, real values before measurement.

Note EPR did not argue against quantum mechanics’ correctness, just its com-
pleteness. That is, they did agree that whenever Alice measured |0⟩, Bob would
also measure |0⟩, and the same goes for |1⟩. But they argued that a local hidden
variable theory must exist that explains these outcomes assuming locality, and this
more complete theory would replace quantum mechanics.

The hardware necessary to do this experiment was not available at the time, and
would not be for nearly fifty years in the early 1980’s, long after Einstein’s death in
1955. Even if scientists were able to do the experiment at the time, it would not have
resolved the paradox. If scientists did the experiment and Alice and Bob’s qubits
agreed as predicted by quantum mechanics, it would show that quantum mechanics
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was correct, but we would still not know if it meant that Alice’s qubit could influence
Bob’s qubit faster than light, or if there is a hidden variable not accounted for by
quantum mechanics that determines the measurement outcomes. If scientists did the
experiment and Alice and Bob’s qubits disagreed from the predictions of quantum
mechanics, then it would mean that quantum mechanics was simply wrong, not
incomplete.

Almost thirty years into the EPR paradox, however, an important result was
found that would allow scientists to determine which was right, quantum mechanics
or local realism.

Exercise 6.4. Watch “Misconceptions About the Universe” by Veritasium at https://www.yo
utube.com/watch?v=XBr4GkRnY04. Fill in the blanks:

(a) “There was a time when the universe was expanding so rapidly that parts of it were mov-
ing apart from each other faster than the speed of light. That time is

.”
(b) “Relativity says nothing can move through faster than light, but that

doesn’t stop itself from expanding however it likes.”

6.2.2 Bell Inequalities and the CHSH Inequality

In 1964, John Stewart Bell proved an important result that would further distinguish
quantum mechanics from the local hidden variable theories that EPR, and others,
proposed. Bell calculated the measurement statistics of quantum mechanics for a
general problem. Then, he calculated the measurement statistics of any local hidden
variable theory and showed that they must obey an inequality. The amazing result is
that the quantum mechanical statistics disobeyed or violated the inequality, giving a
way to experimentally determine whether nature followed quantum mechanics or a
local hidden variable theory. If the experiment agreed with quantum mechanics, then
nature is not described by any local hidden variable theory, and if the experiment
agreed with the inequality, the quantum mechanics is not simply incomplete, it is
wrong, because it made an incorrect prediction. An experiment that tests this is
called a Bell test.

The general result that Bell proved is beyond the scope of this textbook, but we
will focus on a particular Bell inequality proposed by Clauser, Horne, Shimony, and
Holt (CHSH). In this experiment, Alice and Bob each have one qubit in the |Φ+⟩
state:

1√
2
(|00〉+ |11〉)

Alice Bob

Alice will either measure her qubit in the Z-basis A = {|0⟩, |1⟩} or the X-basis A′ =
{|+⟩, |−⟩}. Of course, measuring A is just a typical measurement. Measuring in the
X-basis can be done by first applying H, which turns |+⟩ to |0⟩ and |−⟩ to |1⟩, and
then measuring in the Z-basis:

https://www.youtube.com/watch?v=XBr4GkRnY04
https://www.youtube.com/watch?v=XBr4GkRnY04
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A

A′ H

Bob will measure his qubit in one of two bases. The first is

B =

{
1√

4+2
√

2

[
(1+
√

2)|0⟩+ |1⟩
]
,

1√
4−2

√
2

[
(1−
√

2)|0⟩+ |1⟩
]}

,

and they appear on the Bloch sphere on the x+ z-axis:

x

y

z

x+ z

•
1√

4 + 2
√
2

[
(1 +

√
2)|0⟩+ |1⟩

]

•

1√
4− 2

√
2

[
(1−

√
2)|0⟩+ |1⟩

]
The other basis for Bob is

B′ =

{
1√

4+2
√

2

[
(−1−

√
2)|0⟩+ |1⟩

]
,

1√
4−2

√
2

[
(−1+

√
2)|0⟩+ |1⟩

]}
,

and they appear on the Bloch sphere on the −x+ z-axis:

x

y

z−x+ z

•

1√
4 + 2

√
2

[
(−1−

√
2)|0⟩+ |1⟩

]

•

1√
4− 2

√
2

[
(−1 +

√
2)|0⟩+ |1⟩

]
To measure in these bases, we apply the following gates, and then measure in the
Z-basis:
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B S H T H

B′ S H T † H

These circuits convert the basis states to |0⟩ and |1⟩, and then we measure in the
Z-basis (see Exercise 6.5).

Exercise 6.5. Consider Bob’s two measurement bases, B and B′:

B =

{
1√

4+2
√

2

[
(1+
√

2)|0⟩+ |1⟩
]
,

1√
4−2

√
2

[
(1−
√

2)|0⟩+ |1⟩
]}

.

B′ =

{
1√

4+2
√

2

[
(−1−

√
2)|0⟩+ |1⟩

]
,

1√
4−2

√
2

[
(−1+

√
2)|0⟩+ |1⟩

]}
,

(a) Show that the following quantum circuit converts the basis states of B to |0⟩ and |1⟩, up to a
global phase.

B S H T H

(b) Show that the following quantum circuit converts the basis states of B′ to |0⟩ and |1⟩, up to a
global phase.

B′ S H T † H

You can do these calculations by hand if you would like, but I recommend using a computer algebra
system.

So, there are four combinations of bases, AB, AB′, A′B, and A′B′. For each of
these four bases, Alice and Bob run the experiment many times, and they get some
probability distribution for them both getting 0, getting 0 and 1, getting 1 and 0, and
both getting 1:

P00, P01, P10, P11.

Now Alice and Bob interpret their measurement results as +1 and −1. So, if Alice
measures |0⟩, she records it as +1, and when she gets |1⟩, she records it as −1. Bob
does the same thing. If we multiply their measurement results, then |00⟩ would be
(1)(1) = 1, |01⟩ would be (1)(−1) = −1, |10⟩ would be (−1)(1) = −1, and |11⟩
would be (−1)(−1) = 1. Then, the average outcome are these values multiplied by
their probabilites, added together:

E(A,B) = (1)P00 +(−1)P01 +(−1)P10 +(1)P11

= P00−P01−P10 +P11.

This is called the quantum correlation, and it is simply the average or expected
value of the product of their measurement results. Finally, consider the following
quantity that comes from adding/subtracting the quantum correlations for the four
measurement bases:

S = E(A,B)+E(A,B′)+E(A′,B)−E(A′,B′).
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The CHSH inequality is a Bell inequality that says for any local hidden variable
theory,

|S| ≤ 2.

The derivation of this is beyond the scope of this textbook. We can calculate, how-
ever, what quantum mechanics predicts S should be. First, if Alice measures in the
Z-basis A and Bob measures in the basis B, then the circuit we apply is

S H T H
|Φ+〉

Then, the state at the end of the circuit, before the measurements, is

(I⊗H)(I⊗T )(I⊗H)(I⊗S)
∣∣Φ+

〉
.

We could calculate this by hand, but Mathematica or SageMath might be easier:

• Using Mathematica,

PhiPlus = {{1/Sqrt[2]}, {0}, {0}, {1/Sqrt[2]}};
H = 1/Sqrt[2] {{1, 1}, {1, -1}};
S = {{1, 0}, {0, Eˆ(I Pi/2)}};
T = {{1, 0}, {0, Eˆ(I Pi/4)}};
Eye = IdentityMatrix[2];
KroneckerProduct[Eye, H] . KroneckerProduct[Eye, T] .
KroneckerProduct[Eye, H] . KroneckerProduct[Eye, S] .

↪→ PhiPlus

The output is

1+ eiπ/4

2
√

2
|00⟩+ 1− eiπ/4

2
√

2
|01⟩+ i

1− eiπ/4

2
√

2
|10⟩+ i

1+ eiπ/4

2
√

2
|11⟩.

• Using SageMath,

sage: PhiPlus = vector([1/sqrt(2), 0, 0, 1/sqrt(2)]).column()
sage: H = 1/sqrt(2) * Matrix([[1,1],[1,-1]])
sage: S = Matrix([[1,0],[0,eˆ(i*pi/2)]])
sage: T = Matrix([[1,0],[0,eˆ(i*pi/4)]])
sage: Eye = Matrix([[1,0],[0,1]])
sage: Eye.tensor_product(H) * Eye.tensor_product(T) * Eye.

↪→ tensor_product(H)
....: * Eye.tensor_product(S) * PhiPlus
[ -1/8*sqrt(2)*(-(I + 1)*sqrt(2) - 2)]
[ -1/8*sqrt(2)*((I + 1)*sqrt(2) - 2)]
[ -1/8*sqrt(2)*((I - 1)*sqrt(2) - 2*I)]
[-1/8*sqrt(2)*(-(I - 1)*sqrt(2) - 2*I)]

Since (1+ i)/
√

2 = eiπ/4, the output simplifies to

1+ eiπ/4

2
√

2
|00⟩+ 1− eiπ/4

2
√

2
|01⟩+ i

1− eiπ/4

2
√

2
|10⟩+ i

1+ eiπ/4

2
√

2
|11⟩.
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Then, the probability of getting each state is

P00 =

∣∣∣∣∣1+ eiπ/4

2
√

2

∣∣∣∣∣
2

=
2+
√

2
8

,

P01 =

∣∣∣∣∣1− eiπ/4

2
√

2

∣∣∣∣∣
2

=
2−
√

2
8

,

P10 =

∣∣∣∣∣i1− eiπ/4

2
√

2

∣∣∣∣∣
2

=
2−
√

2
8

,

P11 =

∣∣∣∣∣i1+ eiπ/4

2
√

2

∣∣∣∣∣
2

=
2+
√

2
8

.

Then, the quantum correlation is

E(A,B) = P00−P01−P10 +P11

=
2+
√

2
8
− 2−

√
2

8
− 2−

√
2

8
+

2+
√

2
8

=
4
√

2
8

=
1√
2
.

Similarly, if we calculate the quantum correlation for the other measurement bases,
we would get

E(A,B′) =
1√
2
, E(A′,B) =

1√
2
, E(A′,B′) =

−1√
2
.

Note the negative sign for E(A′,B′).
Exercise 6.6. Alice and Bob share an entangled pair of qubits in the |Φ+⟩= 1√

2
(|00⟩+ |11⟩) state.

If Alice measures her qubit in the X-basis A′ = {|+⟩, |−⟩} and Bob measures his qubit in the basis

B′ =

{
1√

4+2
√

2

[
(−1−

√
2)|0⟩+ |1⟩

]
,

1√
4−2

√
2

[
(−1+

√
2)|0⟩+ |1⟩

]}
,

find
(a) P00.
(b) P01.
(c) P10.
(d) P11.
(e) E(A′,B′) = P00−P01−P10 +P11.

You can do these calculations by hand if you would like, but I recommend using a computer algebra
system that supports linear algebra.

Then,

S = E(A,B)+E(A,B′)+E(A′,B)−E(A′,B′) =
4√
2
= 2
√

2≈ 2.83.
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Thus, we see that quantum mechanics violates the CHSH inequality, since quantum
mechanics predicts S = 2.83, while any local hidden variable theory predicts |S|< 2.
Now, the true value of S is a matter of experiment. If we get a value of S greater than
2, then local hidden variable theories are wrong. If we get a value less that 2, then
quantum mechanics is not only incomplete, but wrong because it made an incorrect
prediction.

Tsirelson proved that the value for S that we just calculated is the maximum
amount that S can be using quantum mechanics, i.e.,

|S| ≤ 2
√

2.

This inequality is known as Tsirelson’s inequality, and it is the maximum amount
that the CHSH inequality can be violated by quantum mechanics.

6.2.3 Quantum Processor Experiment

Since we have access to IBM’s quantum processors, let us try running the CHSH
experiment to see if we get a value of |S| less than or greater than 2.

We need to run four experiments, one for each of the measurement bases AB,
AB′, A′B, and A′B′. Beginning with AB:

In this circuit, we have two qubits that are initially |00⟩. We apply H⊗ I to get |+0⟩
and then CNOT to get |Φ+⟩. Now Alice measures in the Z-basis A, and Bob mea-
sures in the B basis. We are not interested in the simulation because the simulation
is simply following the laws of quantum mechanics, and we want to test if quantum
mechanics is actually correct experimentally or not. Running this on ibmq athens,
we get the following results:
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Note you also ran this circuit on a quantum processor in Exercise 5.5.
Next, for AB′, Alice again measures in the Z-basis, but now Bob measures in the

B′ basis:

Executing this on ibmq athens,

Third, for A′B, Alice now measures in the X-basis, and Bob measures in the B
basis:

Executing this on ibmq athens,
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Finally, for A′B′, Alice measures in the X-basis, and Bob measures in the B′ basis:

Executing this on ibmq athens,

Let us put all these probabilities in a table:

Basis P00 P01 P10 P11 E
AB 0.40820 0.08203 0.08398 0.42578 0.66797
AB′ 0.44727 0.08984 0.07422 0.38867 0.67188
A′B 0.39453 0.09375 0.09180 0.41992 0.62890
A′B′ 0.09180 0.40820 0.41797 0.08203 -0.65234

Then, our quantity of interest is

S = E(A,B)+E(A,B′)+E(A′,B)−E(A′,B′)

= 0.66797+0.67188+0.62890− (−0.65234)
= 2.62109.

Since this is greater than 2, quantum mechanics is right. Nature is not described by
a local hidden variable theory.
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6.2.4 Other Experiments

Our previous experiment using a quantum processor is not very precise, however.
We do not know how much time occurred between the measurements of the two
qubits, so we have not guaranteed that we measured them so closely that an influ-
ence would need to travel faster than light. Far more precise experiments, not using
quantum processors, were performed in the early 1980’s by Alain Aspect and others
(see Exercise 6.7), and Alice and Bob’s qubits were sufficiently far apart that the
collapse of one would need to travel faster than light to affect Bob’s qubit. They
showed that the Bell inequalities were indeed violated, meaning the universe is not
locally realistic (i.e., not described by local hidden variable theories). Since then,
even more experiments have been done that have closed various “loopholes” that
skeptics have raised (see Exercise 6.8).

Exercise 6.7. Go to https://doi.org/10.1103/PhysRevLett.49.91 and download
the PDF.

(a) From the abstract, the scientists measured pairs of what?
(b) From Eq. (2), Bell’s inequalities say that for “realistic local theories,” the quantity S must be

between what two values?
(c) From Eq. (6), quantum mechanics predicts what value of S for the experiment?
(d) From Eq. (4), what value of S did they actually measure?
(e) Did their measured value for S in (d) agree or disagree with Bell’s inequalitiy for realistic

local theories in (b)?

Exercise 6.8. Go to https://doi.org/10.1038/nature15759, which is a paper on the
first “loophole-free” Bell test. From the abstract, answer the following questions.

(a) The scientists used the spins of what particle to perform their Bell test?
(b) What is a loophole that their experiment closed/addressed?
(c) How far apart were their spins?
(d) Which Bell inequality did they test, and what bound on S does it place?
(e) What observed value of S did they measure?
(f) What p-value did they obtain? That is, what is the probability that a local hidden variable

theory could produce the data they observed?

6.2.5 No-Signaling Principle

From the above experiments, the collapse of an entangled state occurs faster than
light. While this seems to violate a fundamental tenant of physics, that nothing can
travel through space faster than light, it does not permit information to be transmitted
faster than light. So, while the universe permits “spooky action at a distance,” it does
not permit “spooky communication at a distance.”

Say Alice and Bob share seven maximally entangled pairs of qubits, with each
pair in the state |Φ+⟩. Alice is on Earth, and Bob travels to another galaxy with his
qubits.

https://doi.org/10.1103/PhysRevLett.49.91
https://doi.org/10.1038/nature15759
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1√
2
(|00〉+ |11〉)

1√
2
(|00〉+ |11〉)

1√
2
(|00〉+ |11〉)

1√
2
(|00〉+ |11〉)

Alice Bob

1√
2
(|00〉+ |11〉)

1√
2
(|00〉+ |11〉)

1√
2
(|00〉+ |11〉)

Alice wants to send the ASCII letter “Q” (i.e., the bit string 1010001) to Bob. Clas-
sically, Alice would need to physically send the bits, such as via radio waves trans-
mitted through space, or by writing a letter and sending it on a spaceship. Either
way, her message (the letter “Q”) cannot travel faster than light. But quantumly, can
they use their entangled qubits to communicate faster than light?

What might Alice try doing? If she measures each of her seven qubits, she gets
|0⟩ or |1⟩ for each qubit, and Bob’s qubits would match hers. But since she gets
each value with probability 1/2, Alice and Bob get matching random strings, not
1010001 that encodes the letter Q.

In hopes of getting something less random, suppose Alice measures a qubit in
the Z-basis {|0⟩, |1⟩} to try to communicate 0, and in the X-basis {|+⟩, |−⟩} to try
to communicate 1. So to send 1010001, Alice would measure her first qubit in the
X-basis, her second qubit in the Z-basis, her third qubit in the X-basis, her fourth
through sixth qubits in the Z-basis, and her seventh qubit in the X-basis. When
she measures in the Z-basis, she gets |0⟩ or |1⟩, each with probability 1/2. If she
measures in the X-basis, then we can show that (see Exercise 6.9):∣∣Φ+

〉
=

1√
2
(|++⟩+ |−−⟩) ,

and so she gets |+⟩ or |−⟩, each with probability 1/2. Bob’s qubits match Alice’s
exactly. To determine the message, Bob needs to determine which basis the qubits
were measured in. But there is no way for him to do that. If he measures in the same
basis as Alice, he gets the same result as Alice. But if he measures in the wrong basis
(X when Alice used Z, or Z when Alice used X), he gets an answer with probability
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1/2. Either way, he does not know if the answer he got was correct or random unless
he calls Alice on the phone and asks her, which is a classical communication bound
by the speed of light.

In fact, no matter what Alice and Bob try, they cannot use entanglement to com-
municate faster than light. This is called the no-signaling principle, and it is a state-
ment of no faster-than-light communication or no superluminal communication.

Exercise 6.9. Show that |Φ+⟩= 1√
2
(|00⟩+ |11⟩), in the X-basis, is

1√
2
(|++⟩+ |−−⟩) .

6.2.6 Other Theories

The Bell tests show that nature is not locally realistic. Whether locality is wrong,
realism is wrong, or both, however, is still a matter of debate.

Our explanation of quantum computing and quantum mechanics, that quantum
states are superpositions and measurement collapses the state, is known as the
Copenhagen interpretation. It was formulated by Niels Bohr and Werner Heisen-
berg, two of the “fathers” of quantum mechanics, in the 1920’s, and is named after
Copenhagen, Denmark because that is where they worked. It is the most popular
interpretation of quantum mechanics. Following this interpretation, the EPR para-
dox would be resolved by the understanding that quantum states are superpositions
and do not take “real” values until measurement, and the collapse occurs instanta-
neously, although information cannot be communicated faster than light.

It is not the only interpretation, however, and others explain the EPR paradox
differently:

• Some physicists theorize that entangled particles are connected through worm-
holes or Einstein-Rosen bridges. Then, the collapse of entangled states does not
occur faster than light because these bridges provide shortcuts across spacetime.

• In pilot wave theory or de Broglie-Bohm theory or Bohmian mechanics, an ac-
tual, real particle interacts with a wave that guides it, and the wave evolves by
the laws of quantum mechanics. This maintains realism but abandons locality.
From the Bell tests, our universe is not described by a local hidden variable
theory, but that does not exclude the possibility that nature obeys a non-local
hidden variable theory. Pilot wave theory is a non-local hidden variable theory.

• In the many-worlds interpretation, quantum states do not collapse. Rather, when
a measurement is made, parallel universes are created, one where each possible
outcome occurred. Both outcomes are equally real in each universe. This is local
and realistic.

Exercise 6.10. Watch “Quantum Entanglement and the Great Bohr-Einstein Debate” by PBS
Space Time at https://www.youtube.com/watch?v=tafGL02EUOA. Fill in the blanks.

https://www.youtube.com/watch?v=tafGL02EUOA


252 6 Entanglement and Quantum Protocols

(a) “This notion that the universe exists independent of the mind of the observer is called
in physics.”

(b) “Niels Bohr insisted that it was meaningless to assign reality to the universe in the absence of
observation; in the intervals between measurements, quantum systems truly exist as a fuzzy
mixture of all possible properties, what we call a of states.”

(c) “Albert Einstein insisted on an objective reality, a reality independent of our observation of it.
He insisted that the wave function, and by extension quantum mechanics, is .
There must exist what we call that reflect a more
physical underlying reality.”

(d) “[EPR] proposed a quantum scenario that showed in order to abandon the assumption
of realism, you also had to abandon a concept almost as sacred— .

is the idea that each bit of the universe only acts on its immediate sur-
roundings. This is fundamental to Einstein’s relativity, which tells us that the chain of cause
and effect can’t propagate any faster than the

.”
(e) “Quantum mechanics requires that we describe the particle pair with a single combined

wave function that encompasses all possible states of both particles. We call such particles
an . Now, according to the Copenhagen interpre-
tation, any measurement of one particle automatically collapses the entire entangled wave
function and so affects the results of measurements of the other particle. That’s an influ-
ence that could theoretically be transmitted across any distance, and
even back in time, violating locality and possibly violating causality. Einstein et al. thought
this was very silly. They thought that every special point in the universe must be real
and physical and defined by knowable quantities,

that could affect each other no faster than the speed of light.”
(f) “Measurement the alignment of the measured particle.”
(g) “Scenario one, if Einstein was right, imagine the response of each particle to all pos-

sible spin measurements is encoded in each particle at the moment of their creation as
local to each particle. we

do later to one particle will then effect the other. When we later measure the spins of both
particles, there will be a correlation in the results because the particles were once connected.
But there’ll be due to our choice of measurement
axis.”

(h) “Scenario two—Bohr was right. What if between creating and measurement, the electron and
positron only exist as a wave function of all possible states. In that case, measurement of one
particle spin should cause the entire wave function to collapse, to take on

. Both particles should then manifest opposite spins along whichever
axis we choose for one of the particles. That should lead to a correlation between our choice
of measurement axis for the first particle and the spin of direction then measured for the
second. This is exactly the at a distance that made
Einstein so uncomfortable.”

(i) “John Steward Bell figured out a set of observable results, the so-called
, that we expect to see in the case that Einstein was right and quantum

mechanics needs local hidden variables. But if an entanglement experiment violates the Bell
inequalities, then local realism is also violated.”

(j) “But in the early ’80s, French physicist Alain Aspect succeeded. Instead of looking at the
entangled spins of an electron-positron pair, he used photon pairs with entangled polariza-
tions. [...] And Aspect showed that there was a correlation between the choice of polarization
measurement axis for one photon and the final polarization direction of its entangled partner.
The Bell inequalities were . The experiment was even set up so that the
influence had to travel between the photons at the
speed of light.”

(k) “It’s now been thoroughly confirmed that the Bell inequalities are violated, suggesting that the
wave function cannot have .”
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(l) “The results of these entanglement experiments do seem to violate local realism. But that may
mean a violation of , or just of .”

(m) “Non-locality requires that entangled particles affect each other instantaneously. That sounds
blasphemous to anyone who accepts Einstein’s theory of relativity. However, non-locality and
relativity can actually be perfectly . Relativity requires that causality is
preserved, so no faster than light flow. But none of these entanglement
experiments allow any real information to be transmitted between particles. It’s only possible
to see the influence between the entangled partners after measurements have been made and
those measurements are compared.”

(n) “The interpretation remains consistent with all quantum observations.”

6.3 Monogamy of Entanglement

6.3.1 Classical Correlations

Classical correlations can be shared among multiple parties. For example, say there
are three people, Alice, Bob, and Charlie, and they each have a bit. Say Alice and
Bob’s bits are perfectly correlated: if Alice’s bit is 0, then Bob’s bit is also 0, and if
Alice’s bit is 1, then Bob’s bit is also 1:

Alice Bob
0 0
1 1

Classically, it is possible for Charlie’s bit to be perfectly correlated with Alice’s bit
as well:

Alice Bob Charlie
0 0 0
1 1 1

This satisfies two properties. First, if we remove Charlie, we retain perfect corre-
lation between Alice and Bob. Second, if we remove Bob, Alice and Charlie have
the same correlation as Alice did with Bob. Put another way, if we swap Bob and
Charlie, we get the same distribution. Together, Alice is perfectly correlated with
both Bob and Charlie.

6.3.2 Quantum Entanglement

Is this possible for quantum entanglement? That is, if Alice, Bob, and Charlie have
qubits, is it possible for them to satisfy the two properties above? Say Alice and
Bob’s qubits are in the maximally entangled state∣∣Φ+

〉
=

1√
2
(|0⟩⊗ |0⟩+ |1⟩⊗ |1⟩) .
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We want to add Charlie’s qubit |ψc⟩ so that if we remove him, Alice and Bob’s
qubits are still in the |Φ+⟩ state. Then the three-qubit state must look like

1√
2
(|0⟩⊗ |0⟩+ |1⟩⊗ |1⟩)⊗|ψc⟩.

But now the second property is not satisfied—swapping Bob and Charlie yields a
different state. Alice is not entangled with them to the same degree. In fact, Alice is
maximally entangled with Bob, but she is not entangled at all with Charlie!

From this result, we say that entanglement is monogamous, like a monogamous
relationship between people is exclusive. Two people perfectly “entangled” with
each other (Alice and Bob) are not entangled at all with a third party (Charlie).

Finally, note if Alice and Bob are partially entangled, then it is possible for there
to be some entanglement with Charlie. A proper treatment of this involves express-
ing quantum states, not as kets or vectors, but as density matrices, which also allow
probabilistic mixtures of kets, but that is beyond the scope of this textbook.

Exercise 6.11. The Greenberger–Horne–Zeilinger state (GHZ state) is an entangled state of three-
qubits. It is:

1√
2
(|000⟩+ |111⟩) .

(a) Verify that the GHZ state is produced by the following quantum circuit:

|0〉
|0〉 •
|0〉 H •

(b) If we measure the left qubit, what are the possible resulting states and with what probabilities?
(c) Are the resulting states after the measurement entangled?

Exercise 6.12. The W state is an entangled state of three qubits. It is:

|W ⟩= 1√
3
(|001⟩+ |010⟩+ |100⟩) .

(a) Verify that the W state is produced by the following quantum circuit:

|0〉 X

|0〉 H

|0〉 U

where

U =

√ 2
3 −

1√
3

1√
3

√
2
3

 .

Also, as a reminder, the hollow circle is anti-control. So the second gate applies the Hadamard
gate to the middle qubit if the bottom qubit is 0.

(b) If we measure the left qubit, what are the possible resulting states and with what probabilities?
(c) Are the resulting states after the measurement entangled?
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6.4 Superdense Coding

6.4.1 The Problem

Alice wants to send classical information to Bob, say one of four possible restaurant
options: American, Chinese, Italian, or Mexican. She can either send her preference
using classical bits or qubits, and we will see that if Alice and Bob share entangle-
ment, Alice only needs to send half the number of qubits as she would bits.

6.4.2 Classical Solution

Classically, Alice would have to send two bits to Bob, since two bits have four
possible states 00, 01, 10, or 11. One bit would not suffice, since it only has two
states 0 or 1.

6.4.3 Quantum Solution

Quantumly, Alice can send just one qubit, but it needs to be entangled with a second
qubit that Bob already has. Say Alice and Bob share a pair of entangled qubits in
the |Φ+⟩ state:

1√
2
(|00〉+ |11〉)

Alice Bob

Depending on which of the four options Alice wants to communicate to Bob, she
can apply quantum gates to her qubit, then send her one qubit to Bob so that Bob
ends up with both qubits:

• If Alice wants to send 00, she does nothing to her qubit, and sends it to Bob so
that he has both qubits.

• If Alice wants to send 01, she applies the X gate to her qubit, which transforms
|Φ+⟩ to ∣∣Ψ+

〉
=

1√
2
(|10⟩+ |01⟩) .

Then she sends her qubit to Bob, so that he has both qubits.
• If Alice wants to send 10, she applies the Z gate to her qubit, which transforms
|Φ+⟩ to ∣∣Φ−〉= 1√

2
(|00⟩− |11⟩) .

Then she sends her qubit to Bob, so that he has both qubits.
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• Finally, if Alice wants to send 11, she applies both X and Z to her qubit. Apply-
ing X transforms |Φ+⟩ to |Ψ+⟩, and appling Z transforms |Ψ+⟩ to∣∣Ψ−〉= 1√

2
(|01⟩− |10⟩) .

Then Alice sends her qubit to Bob, so that he has both qubits.

Now Bob has both qubits, and they are in one of four states:∣∣Φ+
〉
=

1√
2
(|00⟩+ |11⟩) ,∣∣Ψ+

〉
=

1√
2
(|01⟩+ |10⟩) ,∣∣Φ−〉= 1√

2
(|00⟩− |11⟩) ,∣∣Ψ−〉= 1√

2
(|01⟩− |10⟩) .

Since these four states are orthonormal, they form a measurement basis called the
Bell basis. Bob can measure the two qubits this Bell basis to distinguish them, thus
determining what Alice wanted to send. This is called a Bell measurement.

Another way to understand the Bell measurement is to apply CNOT and then
H⊗ I, then measuring in the Z-basis. That is,∣∣Φ+

〉 CNOT−−−→ 1√
2
(|00⟩+ |10⟩) = |+⟩|0⟩ H⊗I−−→= |00⟩,∣∣Ψ+

〉 CNOT−−−→ 1√
2
(|01⟩+ |11⟩) = |+⟩|1⟩ H⊗I−−→= |01⟩,∣∣Φ−〉 CNOT−−−→ 1√

2
(|00⟩− |10⟩) = |−⟩|0⟩ H⊗I−−→= |10⟩,∣∣Ψ−〉 CNOT−−−→ 1√

2
(|01⟩− |11⟩) = |−⟩|1⟩ H⊗I−−→= |11⟩.

Computationally, this protocol still requires two qubits, as it must because
Holevo’s theorem says that n qubits can only store n bits of classical information.
Yet as a communication protocol, it only requires one qubit to be sent.

Generalizing this, if Alice and Bob share n pairs of entangled qubits (so there are
2n qubits total), then Alice can measure each of her n qubits or not depending on
what she wants to send, then send them to Bob.

Exercise 6.13. Verify that |Φ+⟩, |Ψ+⟩, |Φ−⟩, and |Ψ−⟩ are orthonormal to each other. That is,
calculate ⟨Φ+|Φ−⟩, etc.

Exercise 6.14. Say Alice wants to send one of sixteen possible states to Bob.
(a) How many classical bits would Alice need to send to Bob?
(b) How many qubits would Alice need to send to Bob if they share entanglement?
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(c) How many qubits total would it take, counting both Alice’s and Bob’s qubits?

Exercise 6.15. Consider the following quantum circuit that implements superdense coding.

|0〉

|0〉 H • X Z • H

The bottom qubit is Alice’s, and the top qubit is Bob’s. In the first dotted square, Alice and Bob
create the maximally entangled state |Φ+⟩ by applying H⊗ I and CNOT . Bob then goes away on a
trip. Alice wants to send Bob a message, so in the second dotted square, she applies X followed by
Z to her qubit. Then, she sends her qubit to Bob. Bob now has both qubits. To read Alice’s message,
in the third square, he applies CNOT followed by H⊗ I, and then measures in the Z-basis.

(a) What result should Bob get for his measurement?
(b) Run the circuit on an actual quantum processor using IBM Quantum. Which processor did

you use? What histogram of results do you get?
(c) How would you modify the circuit so that Alice sends |01⟩ to Bob?

6.5 Quantum Teleportation

6.5.1 The Problem

In the previous section on superdense coding, we used qubits to send classical in-
formation. In this section, we consider the opposite. We can only send bits, but we
want to send quantum information. In particular, Alice would like to send a qubit’s
unknown state |ψ⟩= α|0⟩+β |1⟩ to Bob.

6.5.2 Classical Solution

Since Alice does not know the state |ψ⟩, she cannot describe it to Bob. If she mea-
sures the qubit, she will collapse it to |0⟩ or |1⟩, and she will not know the original
superposition α|0⟩+β |1⟩. So, in general, Alice cannot tell Bob the state |ψ⟩.

If Alice had many qubits, each in the state |ψ⟩, then she could measure each
one, possibly in different bases, to get a sense of what |ψ⟩ might be. This is called
quantum state tomography. The more qubits Alice has in the state |ψ⟩, the more
accurately she can determine |ψ⟩, and then she can tell Bob her best guess of the
state. In the problem we are trying to solve, however, Alice only has one qubit in
the state |ψ⟩, and from the no-cloning theorem, she cannot make extra copies.

Even if she did know the state, the amplitudes are in general complex numbers
that can take rational or irrational values, and the irrational values would take an
infinite number of bits to express. So, Alice would need to send Bob many bits to
describe the state of the qubit. Next, we will see how entanglement can be used so
that Alice can get Bob the state |ψ⟩ by only telling him two bits.
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6.5.3 Quantum Solution

If Alice and Bob already share entanglement, they can use it to teleport the quantum
state. Say they share a pair of entangled qubits in the state |Φ+⟩. Alice has one of
these qubits, plus the one she wants to send |ψ⟩. Bob has the other entangled qubit.

|ψ〉 = α|0〉+ β|1〉 1√
2
(|00〉+ |11〉)

Alice Bob

Altogether, the three qubits are in the state

|ψ⟩
∣∣Φ+

〉
= α|0⟩

∣∣Φ+
〉
+β |1⟩

∣∣Φ+
〉

= α|0⟩ 1√
2
(|00⟩+ |11⟩)+β |1⟩ 1√

2
(|00⟩+ |11⟩)

=
1√
2
[α (|000⟩+ |011⟩)+β (|100⟩+ |111⟩)] .

The left two qubits belong to Alice, and the right qubit belongs to Bob. First, Alice
applies a CNOT gate to her two qubits, resulting in the state

1√
2
[α (|000⟩+ |011⟩)+β (|110⟩+ |101⟩)] .

Next, she applies a Hadamard gate to her left qubit, yielding

1√
2
[α (|+00⟩+ |+11⟩)+β (|−10⟩+ |−01⟩)]

=
1
2
[α (|0⟩+ |1⟩)(|00⟩+ |11⟩)+β (|0⟩− |1⟩)(|10⟩+ |01⟩)]

=
1
2

[
|00⟩(α|0⟩+β |1⟩)+ |01⟩(β |0⟩+α|1⟩)

+ |10⟩(α|0⟩−β |1⟩)+ |11⟩(−β |0⟩+α|1⟩)
]
.

Then, Alice measures her two qubits. She gets 00, 01, 10, 11, each with probability
1/4. So after the measurement, the possible states are

|00⟩(α|0⟩+β |1⟩) ,
|01⟩(β |0⟩+α|1⟩) ,
|10⟩(α|0⟩−β |1⟩) ,
|11⟩(−β |0⟩+α|1⟩) .

Now Alice tells Bob the results of her measurement, which are two classical bits.
This is a classical communication. Bob uses this information to possibly apply quan-
tum gates to his qubit.
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• If Alice’s measurement was 00, Bob does nothing because his qubit is now in
the state |ψ⟩ that Alice wanted to send him.

• If Alice’s measurement was 01, then Bob applies an X gate to his qubit, trans-
forming it into |ψ⟩.

• If Alice’s measurement was 10, then Bob applies a Z gate to his qubit, trans-
forming it into |ψ⟩.

• Finally, if Alice’s qubit was 11, then Bob applies an X gate followed by a Z
gate, transforming it into |ψ⟩.

So Bob’s qubit is now in the state |ψ⟩, achieving the goal of transferring the state of
Alice’s qubit to Bob’s qubit. This is called quantum teleportation. Note that Alice’s
qubit was not physically transferred to Bob, only information about what state it
was in. In the process, Alice had to measure her qubit, destroying the quantum in-
formation. This is necessary because of the no-cloning theorem. Furthermore, even
though the state of Bob’s qubit changed instantly when Alice measured her qubits
and collapsed the state, this information was not useful until Alice told Bob the re-
sult of her measurement, which is a classical communication bounded by the speed
of light. So, quantum teleportation cannot be performed faster than light, which is
consistent with the no-signaling principle.

Quantum teleportation is implemented by the following circuit:

X Z |ψ〉

•

|ψ〉 • H •

|Φ+〉

The top qubit is Bob’s, and the bottom two qubits are Alice’s. The bottom qubit
starts in the unknown state |ψ⟩, which Alice wants to teleport to Bob, and the top
two qubits start in the entangled state |Φ+⟩. Alice applies a CNOT to her qubits
followed by H on her bottom qubit. Then she measures her qubits, getting 00, 01, 10,
or 11. If her right qubit was 1, Bob applies X , and if her left qubit was 1, Bob applies
Z. These are controlled-X and controlled-Z gates. This completes the teleportation,
and Bob’s qubit ends up in the state |ψ⟩.

Using the principle of deferred measurement (introduced on page 194), we can
move the measurements after the controls and replace the classical controls with
quantum ones:

X Z |ψ〉

•

|ψ〉 • H •

|Φ+〉

Simulating this in Quirk at https://bit.ly/3pn1hCj,

https://bit.ly/3pn1hCj
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This begins with X t and Zt , which put the bottom qubit in some state |ψ⟩ depicted
on the Bloch sphere. Then, we have the teleportation circuit, and at the end, the three
Bloch spheres show that the top qubit is in the state |ψ⟩, while the bottom qubit is
no longer in this state.

Exercise 6.16. Alice wants to teleport a qubit in an unknown state |ψ⟩ = α|0⟩+ β |1⟩ to Bob.
Instead of sharing two entangled qubits in the |Φ+⟩ state, they share two entangled qubits in the
|Ψ+⟩ state:

|ψ〉 = α|0〉+ β|1〉 1√
2
(|01〉+ |10〉)

Alice Bob

Altogether, the initial state of the system is

|ψ⟩
∣∣Ψ+

〉
= (α|0⟩+β |1⟩) 1√

2
(|01⟩+ |10⟩)

=
1√
2
(α|001⟩+α|010⟩+β |101⟩+β |110⟩) .

So, the left two qubits are Alice’s, and the right qubit is Bob’s.
(a) Show that if Alice applies CNOT to her two qubits, followed by H to her left qubit, the state

of the system becomes

1
2
[
|00⟩(β |0⟩+α|1⟩)+ |01⟩(α|0⟩+β |1⟩)

+ |10⟩(−β |0⟩+α|1⟩)+ |11⟩(α|0⟩−β |1⟩)
]
.

(b) Next, Alice measures both of her qubits. What values can she get, with what probabilities,
and what does the state collapse to in each case?

(c) Finally, Alice tells Bob the results of her measurement. For each possible result, what should
Bob do to his qubit so that it is α|0⟩+β |1⟩, the state that Alice wanted to teleport to him?

Exercise 6.17. Alice wants to teleport a qubit in an unknown state |ψ⟩ = α|0⟩+ β |1⟩ to Bob.
Instead of sharing two entangled qubits in a Bell state, they share three entangled qubits in the
GHZ state:

|GHZ⟩= 1√
2
(|000⟩+ |111⟩) .

The left two qubits are with Alice, and the right qubit is with Bob.

|ψ〉 = α|0〉+ β|1〉 1√
2
(|000〉+ |111〉)

Alice
Bob
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Altogether, the initial state of the system is

|ψ⟩|GHZ⟩= (α|0⟩+β |1⟩) 1√
2
(|000⟩+ |111⟩)

=
1√
2
(α|0000⟩+α|0111⟩+β |1000⟩+β |1111⟩) .

So, the left three qubits are Alice’s, and the right qubit is Bob’s.
(a) Show that if Alice applies CNOT21 (recall the qubits are numbered right-to-left starting with

zero), followed by CNOT32, followed by H⊗ I⊗ I⊗ I, the state of the system becomes

1
2
[
|000⟩(α|0⟩+β |1⟩)+ |010⟩(β |0⟩+α|1⟩)

+ |100⟩(α|0⟩−β |1⟩)+ |110⟩(−β |0⟩+α|1⟩)
]
.

(b) Next, Alice measures all three of her qubits. What values can she get, with what probabilities,
and what does the state collapse to in each case?

(c) Finally, Alice tells Bob the results of her measurement. For each possible result, what should
Bob do to his qubit so that it is α|0⟩+β |1⟩, the state that Alice wanted to teleport to him?

Exercise 6.18. Alice wants to teleport a qubit in an unknown state |ψ⟩ = α|0⟩+β |1⟩ to Charlie,
and Bob is helping her. They share three entangled qubits in the GHZ state:

|GHZ⟩= 1√
2
(|000⟩+ |111⟩) .

The left qubit is Alice’s, the middle qubit is Bob’s, and the right qubit is Charlie’s.

|ψ〉 = α|0〉+ β|1〉 1√
2
(|000〉+ |111〉)

Alice
Bob

Charlie

Altogether, the initial state of the system is

|ψ⟩|GHZ⟩= (α|0⟩+β |1⟩) 1√
2
(|000⟩+ |111⟩)

=
1√
2
(α|0000⟩+α|0111⟩+β |1000⟩+β |1111⟩) .

So, the left two qubits are Alice’s, the second-to-right qubit is Bob’s, and the right qubit is Charlie’s.
(a) Show that if Alice applies CNOT to her qubits (so the far left qubit is the control and the

second-to-left qubit is the target) and then the Hadamard gate to her left qubit, the state of the
system becomes

1
2
[
|00⟩(α|00⟩+β |11⟩)+ |01⟩(β |00⟩+α|11⟩)

+ |10⟩(α|00⟩−β |11⟩)+ |11⟩(−β |00⟩+α|11⟩)
]
.

(b) Next, Alice measures her two qubits and makes the results known. What values can she get,
with what probabilities, and what does the state collapse to in each case?
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(c) After Alice has completed the above, Bob applies the Hadamard gate to his qubit. Show that
the state of the system after Bob does this is the following four states, depending on the result
of Alice’s measurement:

1√
2
|00⟩

[
|0⟩(α|0⟩+β |1⟩)+ |1⟩(α|0⟩−β |1⟩)

]
,

1√
2
|01⟩

[
|0⟩(β |0⟩+α|1⟩)+ |1⟩(β |0⟩−α|1⟩)

]
,

1√
2
|10⟩

[
|0⟩(α|0⟩+β |1⟩)+ |1⟩(α|0⟩−β |1⟩)

]
,

1√
2
|11⟩

[
|0⟩(−β |0⟩+α|1⟩)+ |1⟩(−β |0⟩−α|1⟩)

]
.

(d) Then, Bob measures his qubit and makes his result known. For each of the above states, what
does the state collapse to? For each possible outcome, what quantum gate(s) should Charlie
apply to his qubit so that it is α|0⟩+β |1⟩, the state that Alice wanted to teleport to him?

6.6 Quantum Key Distribution

6.6.1 Encryption

Alice and Bob would like to send private messages to each other over the internet.
This means others can see the bits they send, but the meaning should be hidden from
everyone except Alice and Bob.

To do this, Alice and Bob need to have a secret key or code that only they know.
Using this secret key, they can encrypt their messages to each other.

For example, say Alice and Bob share a secret key of fourteen random bits that
only they know:

key = 11010110011011.

Alice wants to send “Hi” to Bob, which in ASCII is 1001000 1101001. This is called
the plaintext. If she sends these bits, everyone will know that the message is “Hi.”
So instead, she takes the XOR of each bit of the message with each bit of the secret
key, yielding the ciphertext

plaintext = 1001000 1101001
⊕ key = 1101011 0011011

ciphertext = 0100011 1110010

Now Alice sends this ciphertext to Bob over the internet. If someone intercepts it
along the way, like Eve the eavesdropper, then she will not be able to determine the
original plaintext since she does not have the secret key. Now Bob has the ciphertext,
and he takes the XOR of it with the secret key, which he knows:
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ciphertext = 0100011 1110010
⊕ key = 1101011 0011011

plaintext = 1001000 1101001

Bob decodes the plaintext as “Hi,” receiving the message.
This scheme is called a one-time pad, and it assumes that the secret key is only

used once and is random. If the secret key is used more than once, then Eve might
be able to discern the key, and if it is not random, Eve might be able to guess the
pattern. But as long as these assumptions are satisfied, it is information-theoretically
secure, meaning it is secure from a mathematical standpoint, but perhaps not secure
from someone breaking into Bob’s office and stealing the secret key.

Due to this information-theoretic security, the one-time pad is used for the most
critical of communications, such as the Moscow–Washington hotline that allows
direct, secure communication between Russia and the United States. This hotline
was developed during the Cold War, and is still used today. Since the secret keys
cannot just be sent over the internet for all to see, they have to be delivered in-person
to each country’s embassy.

For those who need strong security, but not at the level of a one-time pad, the
Advanced Encryption Standard (AES) can be used. The secret key can be shorter
than the message, and the ciphertext is created through a series of substitutions,
shifts, and mixes. Nevertheless, a secret key must be established.

Exercise 6.19. You are Bob, and you and Alice are communicating using a one-time pad. You
receive from Alice the ciphertext

1101010101001100000110010010110100110110011001100,

and you know the secret key

0101001011101111000101100000000010101100000101001.

What is the plaintext binary string, and what does it encode in ASCII?

6.6.2 Classical Solution: Public Key Cryptography

A classical way to send a secret message, such as to establish a secret key, is the RSA
cryptosystem, which is an acronym for its inventors Rivest, Shamir, and Adleman.1

It is an example of a public-key cryptosystem, where each user reveals some public
information while still maintaining some private (secret) information.

Say Alice wants to send a message to Bob. To do this securely, Bob prepares
some public and private information. The public information allows anyone to send
him encrypted messages. The private information allows Bob, and only Bob, to

1 Actually, RSA was invented a few years earlier by Clifford Cocks, a mathematician working for
a British intelligence agency, but his work was classified and not revealed until decades later.
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decrypt the message. To do this, Bob begins by choosing two distinct prime numbers
p and q, with some conditions that are beyond the scope of this textbook. A prime
number is any whole number greater than 1 whose only factors are 1 and itself.
Prime numbers can be listed using Mathematica or SageMath:

• In Mathematica, the first ten prime numbers can be listed using

Table[Prime[i], {i, 10}]

The output is
{2,3,5,7,11,13,17,19,23,29}.

• In SageMath, the prime numbers less than 30 can be listed using

sage: list(primes(30))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

We can also use Mathematica or SageMath to check if a number is prime.

• In Mathematica, we can check if a number is prime using the PrimeQ function,
where the “Q” stands for “query” meaning to ask. With this function, we are
asking if a particular number is prime. For example, consider

PrimeQ[2003]

The output of this is True, so 2003 is a prime number. As another example,
consider

PrimeQ[2005]

The output of this is False, so 2005 is not a prime number.
• In SageMath, we can check if a number is prime using the is prime function.

For example,

sage: is_prime(2003)
True
sage: is_prime(2005)
False

For example, say Bob chooses p = 17 and q = 41. Bob keeps these two numbers a
secret, but he does reveal their product. That is, bob computes n= pq= 17 ·41= 697
and makes the number 697 known to Alice and the world. This product n is one of
Bob’s two public keys, and he publishes it so that Alice can use it to send him a
secret message. The length of n in bits is called the key length, and at the time of
this writing, the recommended key length of RSA is 2048-bits. For example, 697 in
binary is 1010111001, so we are using a key length of 10, which is much too short
in practice.

Bob then computes the product φ = (p−1)(q−1). Continuing our example, Bob
computes φ = 16 ·40 = 640. Using this, he then finds some integer e between 1 and
φ that is relatively prime or coprime to φ , meaning the greatest common divisor
of e and φ is 1, which we write as gcd(e,φ) = 1. Put another way, e and φ share
no common factors except 1. Note there is a fast method called Euclid’s algorithm
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from 300 BC/BCE for calculating the greatest common divisor of two integers, and
the number of steps is at most five times the number of digits of the smaller integer.
See Exercise 6.20 for a description of the algorithm. We can use Euclid’s algorithm
to find an e such that gcd(e,φ) = 1, or we can just use Mathematica or SageMath:

• In Mathematica, we can list all the numbers between 2 and 639, inclusive, that
are relatively prime to 640 using the following:

Table[If[GCD[i, 640] == 1, i, Nothing], {i, 2, 639}]

The output of this is

{3,7,9,11,13,17,19,21,23,27,29,31,33,37,39,41,43,47,49,51,53,57,59,
61,63,67,69,71,73,77,79,81,83,87,89,91,93,97,99,101,103,107,109,
111,113,117,119,121,123,127,129,131,133,137,139,141,143,147,149,
151,153,157,159,161,163,167,169,171,173,177,179,181,183,187,189,
191,193,197,199,201,203,207,209,211,213,217,219,221,223,227,229,
231,233,237,239,241,243,247,249,251,253,257,259,261,263,267,269,
271,273,277,279,281,283,287,289,291,293,297,299,301,303,307,309,
311,313,317,319,321,323,327,329,331,333,337,339,341,343,347,349,
351,353,357,359,361,363,367,369,371,373,377,379,381,383,387,389,
391,393,397,399,401,403,407,409,411,413,417,419,421,423,427,429,
431,433,437,439,441,443,447,449,451,453,457,459,461,463,467,469,
471,473,477,479,481,483,487,489,491,493,497,499,501,503,507,509,
511,513,517,519,521,523,527,529,531,533,537,539,541,543,547,549,
551,553,557,559,561,563,567,569,571,573,577,579,581,583,587,589,
591,593,597,599,601,603,607,609,611,613,617,619,621,623,627,629,
631,633,637,639}

• In SageMath, we can list all the numbers less than 640 that are relatively prime
to 640 using the coprime integers function:

sage: phi = 640
sage: phi.coprime_integers(phi)
[1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39,
41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 67, 69, 71, 73, 77,
79, 81, 83, 87, 89, 91, 93, 97, 99, 101, 103, 107, 109, 111,
113, 117, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141,
143, 147, 149, 151, 153, 157, 159, 161, 163, 167, 169, 171,
173, 177, 179, 181, 183, 187, 189, 191, 193, 197, 199, 201,
203, 207, 209, 211, 213, 217, 219, 221, 223, 227, 229, 231,
233, 237, 239, 241, 243, 247, 249, 251, 253, 257, 259, 261,
263, 267, 269, 271, 273, 277, 279, 281, 283, 287, 289, 291,
293, 297, 299, 301, 303, 307, 309, 311, 313, 317, 319, 321,
323, 327, 329, 331, 333, 337, 339, 341, 343, 347, 349, 351,
353, 357, 359, 361, 363, 367, 369, 371, 373, 377, 379, 381,
383, 387, 389, 391, 393, 397, 399, 401, 403, 407, 409, 411,
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413, 417, 419, 421, 423, 427, 429, 431, 433, 437, 439, 441,
443, 447, 449, 451, 453, 457, 459, 461, 463, 467, 469, 471,
473, 477, 479, 481, 483, 487, 489, 491, 493, 497, 499, 501,
503, 507, 509, 511, 513, 517, 519, 521, 523, 527, 529, 531,
533, 537, 539, 541, 543, 547, 549, 551, 553, 557, 559, 561,
563, 567, 569, 571, 573, 577, 579, 581, 583, 587, 589, 591,
593, 597, 599, 601, 603, 607, 609, 611, 613, 617, 619, 621,
623, 627, 629, 631, 633, 637, 639]

Note we require e > 1, so we should ignore the first entry.

Bob can choose any of these numbers. Say he chooses e = 3. This number e is Bob’s
second public key, and he publishes it. It is called e because later, Alice will use it
as an exponent.

Finally, Bob computes d = e−1 mod φ , where mod refers to the modulus or re-
mainder when dividing by φ .2 For example, the 12-hour clock is modulo 12, since
7+ 8 = 15 = 3 mod 12. Continuing our example, we can compute d using Mathe-
matica or SageMath:

• In Mathematica, the inverse of a number modulo some other number can be
found using

ModularInverse[3,640]

The output is 427.
• In SageMath, the inverse of a number modulo some other number can be found

using

sage: e = 3
sage: phi = 640
sage: e.inverse_mod(phi)
427

So, Bob computed d = 3−1 mod 640 = 427. Since d is the inverse of e modulo φ , if
we multiply e and d modulo φ , we should get 1, i.e., ed = 1 mod φ . The number d is
Bob’s private key. It will allow him to decrypt messages sent to him, so he keeps it
a secret. No one else knows d because even though Bob published e, one also needs
to know φ in order to calculate d. Bob may now throw away p and q, but keeping
it does allow him to decrypt a little faster using the Chinese remainder theorem, but
that is beyond the scope of this book.

Alice wants to send Bob a plaintext message that is encoded as a number M, such
that 0 < M < n. She finds Bob’s public keys n and e and computes the ciphertext
C = Me mod n, and then she sends C to Bob. For example, Alice wants to send
M = 104 to Bob, which in binary is 1101000. She can compute the ciphertext using
Mathematica or SageMath:

• In Mathematica,

PowerMod[104,3,697]

2 From number theory, the inverse of e mod φ exists precisely because e was chosen to be relatively
prime to φ .
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The output is 603.
• In SageMath,

sage: power_mod(104,3,697)
603

Thus, C = 1043 mod 697 = 603, and alice sends the number 603 to Bob.
When Bob receives the ciphertext C, he computes Cd mod n = (Me)d mod n =

Med mod n = M1 mod n = M, receiving the message.3 Continuing our example,
Bob computes 603427 mod 697. Computing this in Mathematica or SageMath,

• In Mathematica,

PowerMod[603,427,697]

The output is 104.
• In SageMath,

sage: power_mod(603,427,697)
104

So, 603427 mod 697 = 104, which is the message.
The sequence of steps in this example is summarized below:

Alice Bob

Chooses primes p = 17, q = 41.
Calculates n = pq = 697.
Publishes n.
Computes φ = 16 ·40 = 640.
Chooses e = 3 since gcd(3,640) = 1.
Publishes e.
Computes d = 3−1 mod 640 = 427.

Chooses message M = 104.
Computes C = 1043 mod 697 = 603.
Alice Sends to C to Bob.

Computes 603427 mod 697 = 104 = M.

Decryption is hard for an eavesdropper, Eve, to do, because she does not know
the secret key d. She only knows Bob’s public keys, n and e. To find the secret key
d = e−1 mod φ , she needs to know φ = (p−1)(q−1), but this requires knowing p
and q, which involves factoring n. There is no known efficient, classical algorithm
for factoring large numbers, although a quantum computer can efficiently factor
numbers using Shor’s algorithm, which is the culminating algorithm in this text-
book. As described in Section 1.7.2 on complexity classes, this is evidence, but not
proof, that BQP is larger than P.

3 The plaintext and ciphertext are modulo n, but the exponents are modulo φ . It can be proved
using Fermat’s Little Theorem that with these moduli, Med mod n = M mod n, but the proof is
beyond the scope of this textbook.



268 6 Entanglement and Quantum Protocols

Exercise 6.20. Euclid’s algorithm is a method for finding the greatest common divisor of two
integers by converting the problem into finding the greatest common divisor of successively smaller
and smaller pairs of integers until we get one that is easy to find.

For example, say we want to find gcd(1122,422). We begin by dividing the larger number by
the smaller number. That is, 1122/442 is 2 with a remainder of 238, which we can write as

1122 = 2 ·442+238.

The claim is that the greatest common divisor of the dividend 1122 and divisor 442 is equal to
the greatest common divisor of the divisor 442 and the remainder 238, i.e., gcd(1122,442) =
gcd(442,238). This is because they have the same common divisors, including their greatest com-
mon divisor.4

Using this fact, let us instead find gcd(442,238). Dividing these numbers, 442/238 is 1 with a
remainder of 204, so we can write:

442 = 1 ·238+204.

Using the same fact from before, the greatest common divisor of the dividend and divisor is equal
to the greatest common divisor of the divisor and remainder, i.e., gcd(442,238) = gcd(238,204).

So, we instead find gcd(238,204). Again, we divide these numbers. Since 238/204 is 1 with a
remainder of 34, we write,

238 = 1 ·204+34.

Again using the fact, gcd(238,204) = gcd(204,34).
Now, we instead find gcd(204,34). Dividing, 204/34 is 6 with no remainder, so

204 = 6 ·34+0.

We again use the fact, gcd(204,34) = gcd(34,0).
Finally, we have gcd(34,0) = 34. This is because 34 is the largest integer that divides both 34

and 0 with no remainder. Since this is also the greatest common divisor of our original question,
we have

gcd(1122,442) = 34.

(a) Use Euclid’s algorithm to find gcd(51,57).
(b) Use Euclid’s algorithm to find gcd(34,39).

Exercise 6.21. You are Bob, and you and Alice are communicating using RSA cryptography. You
picked two prime numbers p = 59 and q = 127. Find

(a) Your public key n.
(b) A valid public key e.
(c) Your private key given your choice in part (b).

Exercise 6.22. You are Alice, and you and Bob are communicating using RSA cryptography. Bob
has secret keys n = 2035153 and e = 5. You want to send him a message M = 1234567 using
RSA. What ciphertext C do you send him?

Exercise 6.23. You are Bob, and you and Alice are communicating using RSA cryptography. Alice
sends you some ciphertext C = 1873198. Your public keys are n = 2035153 and e = 5, and your
secret key is d = 1219277. What is the plaintext message (number) that Alice sent?

4 As a proof, let us show that any divisor of 1122 and 422 is also a divisor of their remainder
238, and any divisor of 422 and 238 is also a divisor of 1122. First, say d is a common divisor of
1122 and 422. Then, d is is also a divisor of 1122− 2 · 442, since division is distributive. Since
238 = 1122− 2 · 442, d is also a divisor of 238. Going the other direction, say e is a common
divisor of 422 and 238. Then, e is also a divisor of 2 · 442+ 238, since division is distributive.
Since 2 ·442+238 = 1122, e is also a divisor of 1122. So, gcd(1122,442) = gcd(442,238).
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Exercise 6.24. In 1991, the RSA Factoring Challenge was created to encourage research into fac-
toring by giving values of n of increasing sizes and offering prize money for people who factored
them. Visit

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge

to learn more about the challenge.
(a) How many bits long is the first RSA number, and when was it factored?
(b) What is the largest RSA number that has been factored? How many bits does it have? When

was it factored?
(c) If the RSA Factoring Challenge were still active, how much prize money would you earn for

factoring a 2048-bit long value of n?

6.6.3 Quantum Solution: BB84

A quantum method for establishing a shared secret key was introduced by Bennett
and Brassard in 1984, and it is called the BB84 protocol. It is an example of quantum
key distribution (QKD). Even though it does not use entanglement, it is a quantum
protocol, so it is included in this chapter. There do exist other protocols for QKD that
do utilize entanglement, such as E91, which is named after Ekert who discovered it
in 1991, but they are beyond the scope of this textbook.

In BB84, Alice begins with a bunch of random bits, and for each bit, she ran-
domly chooses either the Z-basis {|0⟩, |1⟩} or the X-basis {|+⟩, |−⟩}. For example,

Alice’s Bits 0 1 0 1 1 0 1 1 1
Alice’s Bases Z Z X Z X X X Z Z

If the bit she wants to send is a 0, and she picked the Z-basis, then she sends Bob
|0⟩, and if she picked the X-basis, then she sends Bob |+⟩. If Alice instead wants to
send the bit 1, and she picked the Z-basis, then she sends Bob |1⟩, and if she picked
the X-basis, then she sends Bob |−⟩. Continuing the example,

Alice’s Bits 0 1 0 1 1 0 1 1 1
Alice’s Bases Z Z X Z X X X Z Z
Alice Sends |0⟩ |1⟩ |+⟩ |1⟩ |−⟩ |+⟩ |−⟩ |1⟩ |1⟩

Bob receives the qubits, and he randomly measures each one in either the Z-basis
or X-basis. If the basis he picked was the same as Alice’s, then he will get the
same result as Alice. If he picked the opposite basis, however, then he will get
each possible result with probability 1/2. For example, if Alice sends |0⟩ and Bob
measures in the Z-basis, he is certain to get |0⟩. But if he measures in the X-basis,
he gets |+⟩ with probability 1/2 or |−⟩ with probability 1/2. He interprets |0⟩ and
|+⟩ as 0, and |1⟩ and |−⟩ as 1. Continuing the example,

https://en.wikipedia.org/wiki/RSA_Factoring_Challenge
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Alice’s Bits 0 1 0 1 1 0 1 1 1
Alice’s Bases Z Z X Z X X X Z Z
Alice Sends |0⟩ |1⟩ |+⟩ |1⟩ |−⟩ |+⟩ |−⟩ |1⟩ |1⟩
Bob’s Bases Z X X Z Z X Z X Z
Bob’s Measurement |0⟩ |−⟩ |+⟩ |1⟩ |0⟩ |+⟩ |1⟩ |+⟩ |1⟩
Bob’s Bits 0 1 0 1 0 0 1 0 1

Now Alice and Bob call each other and openly (publicly) share what basis they
used for each measurement. If they used the same basis, then they know that their
measurement outcomes should agree, and they have a shared secret bit. If they used
different bases, then their measurement outcomes might agree or disagree, and they
discard these bits. Continuing the example.

Alice’s Bits 0 1 0 1 1 0 1 1 1
Alice’s Bases Z Z X Z X X X Z Z
Alice Sends |0⟩ |1⟩ |+⟩ |1⟩ |−⟩ |+⟩ |−⟩ |1⟩ |1⟩
Bob’s Bases Z X X Z Z X Z X Z
Bob’s Measurement |0⟩ |−⟩ |+⟩ |1⟩ |0⟩ |+⟩ |1⟩ |+⟩ |1⟩
Bob’s Bits 0 1 0 1 0 0 1 0 1

Public Discussion of Basis

Shared Secret Key 0 0 1 0 1

So, their shared secret key is 00101.
To ensure Eve did not measure the qubits along the way, Alice and Bob can

reveal a fraction of their shared secret key and make sure they agree. For example,
if Alice and Bob want 256 bits in their shared secret key, they can generate 306 bits
using BB84, reveal 50 of them to ensure there was no eavesdropper, and then use
the remaining 256 for their shared secret key.

If Alice and Bob reveal 50 bits of their shared secret key, what is the probability
they will catch Eve, if Eve is measuring every qubit along the way? To answer this,
let us start with revealing one bit. Say Alice and Bob are revealing a bit where they
both used the Z-basis, and say Alice sent a qubit in the state |0⟩. Then, Alice will
reveal that her bit is 0, while Bob could reveal that his bit is 0 or 1, and we determine
the probabilities of these outcomes using the following diagram:

Alice
Z, |0〉 Eve

Eve
Z, |0〉

Eve
X, |±〉

1/2

1/2

Bob
Z, |0〉

Bob
Z, |0〉
Bob
Z, |1〉

1/2

1/2

1
2

1
4

1
4

3
4 undetected

1
4 detected

On the left side of the diagram, Alice is using the Z-basis, and she sends a qubit in
the |0⟩ state. In the middle of the diagram, Eve intercepted the qubit and measured
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it in either the Z-basis or the X-basis, each with probability 1/2. If Eve measured
in the Z-basis, she got |0⟩, and then forwarded the qubit to Bob. Bob measured the
qubit in the Z-basis, so he also got |0⟩. This is the top row of the above diagram. In
this scenario, which occurs with probability 1/2, Alice and Bob both reveal that they
got the bit 0, and Eve’s eavesdropping was undetected. Now, if Eve measured in the
X-basis instead, then she collapsed the state to |+⟩ or |−⟩ and forwarded it to Bob. In
the above figure, this is the bottom row. Bob then measured the qubit in the Z-basis,
getting |0⟩ with probability 1/2 or |1⟩ with probability 1/2. Overall, each of these
outcomes occur with probability 1/4. If Bob got |0⟩, Eve is undetected, but if he
got |1⟩, Alice and Bob will realize there was an eavesdropper when they reveal their
results. Overall, Eve has a probability of 3/4 of being undetected and a probability
of 1/4 of being detected, as indicated by the curly brace in the above figure, when
Alice and Bob reveal this bit of their shared secret key. In other words, there is a
probability of 3/4 that Alice and Bob both have 0 as their bits, and probability 1/4
that Alice has 0 and Bob has 1.

If Alice and Bob share n bits of their shared secret key, the probability that Eve is
undetected for all n bits is (3/4)n. Then, the probability that Eve is detected is one
minus this, or

Probability Alice and Bob detect Eve = 1−
(

3
4

)n

.

Thus, if Alice and Bob share 50 bits of their shared secret key, the probability that
they detect Eve is 1− (3/4)50 = 0.99999943, which is very close to certainty.

In order to use BB84 in practice, we need the ability to send qubits to each other
through a network. This is called a quantum network, and building a quantum net-
work is an area of active research.

Exercise 6.25. You are Alice, and you and Bob are establishing a secret key using BB84. You have
the following random bits and random bases. What qubits do you send to Bob?

Alice’s Bits 1 0 0 1 0 0 0 1 1
Alice’s Bases X X Z Z Z X X X X
Alice Sends ? ? ? ? ? ? ? ? ?

Exercise 6.26. You are Bob, and you and Alice are establishing a secret key using BB84. You
choose the following random bases to measure each qubit in, and you got the following results.

Bob’s Bases X X Z X Z Z X X Z
Bob’s Measurement |+⟩ |−⟩ |0⟩ |−⟩ |0⟩ |1⟩ |1⟩ |+⟩ |1⟩
Bob’s Bits 0 1 0 1 0 1 1 0 1

Next, you call Alice and learn that she used the following bases:

Alice’s Bases Z Z Z Z Z X X Z Z

What is your shared secret key?

Exercise 6.27. Alice and Bob want to catch a possible eavesdropper with a probability of 99%.
How many bits of their shared secret key should they reveal?
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6.7 Summary

Entanglement is a feature of quantum states that does not exist with classical bits.
Entangled qubits can influence each other faster than the speed of light, but this
influence cannot be used to communicate faster than light. Entanglement is monog-
amous, meaning if two qubits are maximally entangled, they cannot be entangled
at all with a third qubit. Using superdense coding, entanglement does allow Alice
to send Bob 2n bits of information by only physically sending him n qubits. En-
tanglement also allows the state of a qubit to be teleported with the aid of classical
communication. Finally, the BB84 quantum key distribution protocol does not use
entanglement, but it illustrates how a shared secret key can be established between
Alice and Bob, and the security is guaranteed by the laws of physics.



Chapter 7
Quantum Algorithms

In Chapters 1 and 4, we saw a classical algorithm and a quantum algorithm for
adding two binary numbers, each of length n. The classical ripple-carry adder in
Section 1.3.4 used 5n− 3 logic gates, whereas from Section 4.5.7, the quantum
ripple-carry adder used 4n−2 Toffoli gates and 4n CNOT gates, for a total of 8n−2
gates. Thus, the quantum algorithm uses more gates than the classical algorithm.
Furthermore, if we decompose the Toffoli gates into one- and two-qubit gates, the
number of quantum gates would be even greater. This is a disappointing result. We
want quantum computers to be faster (i.e., use fewer gates) than classical computers.
In this chapter, we consider quantum algorithms that are actually better than their
classical counterparts.

7.1 Circuit vs Query Complexity

7.1.1 Circuit Complexity

The most precise way to quantify the complexity of a quantum circuit is to count
the least number of quantum gates required to implement it, relative to some uni-
versal set of quantum gates. This is called its circuit complexity. For example, if we
permit only one- and two-qubit quantum gates, then recall from Exercise 4.23 that
the Toffoli gate can be decomposed into

H T † T T † T H

• = • • T † T † S

• • • • • T

This has sixteen one- and two-qubit gates, but it is not the circuit complexity of the
Toffoli gate. In the top row, the last T and H gates can be combined into a single
one-qubit gate, reducing the number of one- and two-qubit gates to fifteen. Yet this
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is still not the circuit complexity. A circuit that uses even fewer one- and two-qubit
gates is

H P P † P H

• = • •

• • • •

where P is some one-qubit gate. This only uses seven one- and two-qubit gates. It
is an active area of research to determine whether Toffoli can be simplified further.
If only CNOT and one-qubit gates are permitted, however, it has been proved that
Toffoli requires at least six CNOT gates (plus one-qubit gates). Suffice it to say that
circuit complexity is generally hard to find.

In terms of circuit complexity, an efficient quantum algorithm is one with a poly-
nomial circuit complexity. For example, the quantum adder is efficient since its
4n− 2 Toffoli gates can each be decomposed into seven one- and two-qubit gates.
Adding the 4n CNOT gates, this results in 7(4n−2)+4n = 32n−14 one- and two-
qubit gates, which is polynomial (linear) in n.

It is also difficult to find the circuit complexity of classical circuits. It can be
hard to determine if a logic circuit has been fully simplified, and it depends on what
gates are allowed. For example, should the final circuit only consist of AND, OR,
and NOT, or can it also include XOR? Should it only consist of NAND gates? Are
three-bit logic gates allowed, or only one- and two-bit gates?

7.1.2 Query Complexity

Since circuit complexity can be hard to find, we often turn to query complexity
instead. The query complexity of a problem is the number of calls to a function, or
queries to an oracle or black box needed to solve the problem. We give an input to
the function or oracle or black box, and it returns an output, without us knowing
its inner workings. Hence, it is opaque or black. It is significantly easier to find the
query complexity of a problem, or when that is not possible, mathematically prove
upper or lower bounds on it.

For example, a problem we will explore later this chapter is brute-force search-
ing. Say we are searching a database of 100 items for one particular item, and we
have an oracle that tells us whether an item is the correct one or not. We can query,
“Oracle, is item number 1 correct?” If the oracle replies, “Yes,” we have found our
item. If the oracle replies “No,” we can inquire about another item: “Oracle, is item
number 2 correct?” We can continue in this manner until the oracle says “Yes.”
Mathematically, the oracle is just a function f (x) that outputs 0 (no) or 1 (yes). So,
evaluating f (1) is inquiring whether item number 1 is correct. If f (1) = 1, we have
found the correct item, but if f (1) = 0, we can inquire about another item, like f (2),
and so on. The query complexity is the number of times we need to evaluate f (x)
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in order to find the item. As we will see later in Section 7.6, if the database has N
entries, a classical computer takes O(N) queries, but a quantum computer only takes
O(
√

N) queries using Grover’s algorithm. We call such an improvement or speedup
in the number of oracle queries an oracle separation.

The first part of this chapter will cover quantum algorithms with oracle separa-
tions, meaning they take fewer queries than classical computers to solve problems.
These algorithms are generally easier to understand. Then, the second part of this
chapter will cover quantum algorithms with better circuit complexities, which are
generally more advanced. Before we start looking at oracular problems, i.e., prob-
lems with an oracle, let us discuss next how an oracle f (x) acts in a quantum com-
puter.

7.1.3 Quantum Oracles

An oracle is simply a boolean function, meaning a function that acts on bits. Then,
it can be defined using a truth table, and it can be constructed using logic gates.
For it to be a quantum oracle, however, it needs to be reversible. Fortunately, from
Section 1.5.4, we can turn it into a reversible circuit by XORing its output with an
extra bit. For example, if the function is f (x), the reversible circuit is

x x

Oracle f(x)

y
y ⊕ f(x)

Since this entire circuit is reversible, it is a quantum gate. Let us call the gate U f to
emphasize that it is unitary. We can draw it as

|y〉
Uf

|y ⊕ f(x)〉
|x〉 |x〉

That is, the quantum oracle U f acts as

|x⟩|y⟩
U f−→ |x⟩|y⊕ f (x)⟩.

Note we can find f (0) and f (1) by setting y = 0. That is,

|0⟩|0⟩
U f−→ |0⟩|0⊕ f (0)⟩= |0⟩| f (0)⟩,

|1⟩|0⟩
U f−→ |1⟩|0⊕ f (1)⟩= |1⟩| f (1)⟩.

The extra qubit |y⟩ is called an answer qubit or target qubit, and |x⟩ is called the
input qubit.
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Exercise 7.1. Consider a classical oracle f (x) = x, where x is a bit, and x is the NOT of x. We want
to turn this into a quantum oracle U f that acts according to

|x⟩|y⟩
U f−→ |x⟩|y⊕ f (x)⟩.

Answer the following questions about this operator:
(a) What is the truth table of the quantum oracle?

x y x y⊕ f (x)
0 0 ? ?
0 1 ? ?
1 0 ? ?
1 1 ? ?

(b) Is the operation reversible?
(c) What is the quantum oracle as a 4×4 matrix?
(d) Verify that the matrix is unitary.

Exercise 7.2. Go to https://bit.ly/3m3Zcei. By following this link, you should have ac-
cess to a custom gate called U f .

This is the oracle. It acts on two qubits according to

|y〉
Uf

|y ⊕ f(x)〉
|x〉 |x〉

(a) Using Quirk, query the oracle with appropriate inputs to find f (0).
(b) Using Quirk, query the oracle with appropriate inputs to find f (1).

7.1.4 Phase Oracle

If we query a quantum oracle the standard way described above, the input qubit
|x⟩ is unchanged while the answer qubit |y⟩ becomes |y⊕ f (x)⟩. There is a way to
query the quantum oracle, however, that causes the answer qubit |y⟩ to be unchanged
while multiplying |x⟩ by a phase. It works by setting |y⟩= |−⟩, which can be done by
initializing the answer qubit to |0⟩, applying X to turn it into |1⟩, and then applying
H to turn it into |−⟩. That is, writing both the input and answer qubits,

|x⟩|0⟩ I⊗X−−→ |x⟩|1⟩ I⊗H−−→ |x⟩|−⟩.

https://bit.ly/3m3Zcei
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Note it is possible to prepare the answer qubit |y⟩ in the state |−⟩ because the state of
a qubit can be a superposition of |0⟩ and |1⟩; with a classical answer bit, this would
be impossible. Now, let us expand |x⟩|−⟩ and see what happens when we query the
oracle:

|x⟩|−⟩= |x⟩ 1√
2
(|0⟩− |1⟩)

=
1√
2
(|x⟩|0⟩− |x⟩|1⟩)

U f−→ 1√
2
(|x⟩|0⊕ f (x)⟩− |x⟩|1⊕ f (x)⟩)

=

{
1√
2
(|x⟩|0⟩− |x⟩|1⟩) , f (x) = 0

1√
2
(|x⟩|1⟩− |x⟩|0⟩) , f (x) = 1

=

{
|x⟩|−⟩, f (x) = 0
−|x⟩|−⟩, f (x) = 1

= (−1) f (x)|x⟩|−⟩.

We can interpret this as the answer qubit staying in the |−⟩ state while the input
qubit goes from |x⟩ to (−1) f (x)|x⟩. That is, the input qubit acquires a phase. This
is called phase kickback. Often, we drop the answer qubit, since it stays in the |−⟩
state, and only write the input qubit:

|x⟩
U f−→ (−1) f (x)|x⟩.

This is called a phase oracle, where the qubit |x⟩ is multiplied by a phase (−1) f (x).
The phase oracle will be very useful for the oracular problems we will cover.

Exercise 7.3. Quantum oracles are quantum gates, so they act across superpositions. Consider an
input qubit in the superposition state

√
3

2
|0⟩+ 1

2
|1⟩,

and an answer qubit in the state |−⟩. Show that the quantum oracle acts by(√
3

2
|0⟩+ 1

2
|1⟩
)
|−⟩

U f−→

(√
3

2
(−1) f (0)|0⟩+ 1

2
(−1) f (1)|1⟩

)
|−⟩.

Exercise 7.4. We saw that when the answer qubit is in the state |−⟩, we get phase kickback. Let
us explore what happens if the answer qubit is in the state |+⟩. Suppose an input qubit and answer
qubit are in the state |x⟩|+⟩, where x is a bit. If we apply the quantum oracle U f to this, which maps
|x⟩|y⟩ to |x⟩|y⊕ f (x)⟩, what do we get if

(a) f (x) = 0?
(b) f (x) = 1?
(c) How do your answers in parts (a) and (b) compare to the initial state |x⟩|+⟩?
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7.2 Parity

7.2.1 The Problem

For the first algorithm, we have two unknown bits b0 and b1, and we want to find
the parity of the two bits. That is, we want to find b0⊕b1, or equivalently, whether
the number of 1’s is even or odd. To do this, we are given an oracle f (x) = bx that
takes as input an index x ∈ {0,1} and returns the corresponding bit. That is,

f (0) = b0, f (1) = b1.

We will show that to find the parity of b0 and b1, we must query this oracle twice
classically, but only once quantumly.

7.2.2 Classical Solution

Classically, we need to know both bits in order to find b0⊗b1. So, we need to query
the oracle twice, once to find b0 and again to find b1:

b0 = f (0), b1 = f (1).

Then we take the XOR of b0 and b1 to find the parity. Thus, the classical query
complexity is 2.

7.2.3 Quantum Solution: Deutsch’s Algorithm

Quantumly, it only takes 1 query using Deutsch’s algorithm. It uses one input qubit
and one answer qubit, and the algorithm is shown in the following quantum circuit:

|−〉
Uf

|−〉

|0〉 H H Parity

Let us work through each step of the circuit. Ignoring the answer qubit, we first
apply the Hadamard gate to the input qubit:

|0⟩ H−→ 1√
2
(|0⟩+ |1⟩) .

Next, we query the oracle, which acts as a phase oracle because the answer qubit is
|−⟩. From Exercise 7.3, we get
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1√
2

[
(−1) f (0)|0⟩+(−1) f (1)|1⟩

]
.

To show why this is helpful, let us rewrite this. First, we substitute f (0) = b0 and
f (1) = b1:

1√
2

[
(−1)b0 |0⟩+(−1)b1 |1⟩

]
.

Then, we factor out (−1)b0 .

(−1)b0
1√
2

[
|0⟩+(−1)b1−b0 |1⟩

]
.

Now, depending on whether b0 and b1 are equal, this is{
(−1)b0 1√

2
(|0⟩+ |1⟩) , b0 = b1

(−1)b0 1√
2
(|0⟩− |1⟩) , b0 ̸= b1

.

These are just |+⟩ and |−⟩, each with a phase:{
(−1)b0 |+⟩, b0 = b1

(−1)b0 |−⟩, b0 ̸= b1
.

So, if b0 and b1 are equal, we have |+⟩ with an overall phase, and if b0 and b1 are
unequal, we have |−⟩ with an overall phase. We can distinguish these by measur-
ing in the X-basis {|+⟩, |−⟩}. Or, we can apply the Hadamard gate again and then
measure in the Z-basis {|0⟩, |1⟩}. Applying the Hadamard gate, we get{

(−1)b0 |0⟩, b0 = b1

(−1)b0 |1⟩, b0 ̸= b1
.

If we measure this, we either get |0⟩ or |1⟩, since the overall phase of (−1)b0 does
not matter. If we get |0⟩, we know that b0 = b1, and so the parity of the bits is 0
(even). On the other hand, if we get |1⟩, we know that b0 ̸= b1, and so the parity of
the bits is 1 (odd). Thus, depending on whether we get |0⟩ or |1⟩, we know whether
the parity of the two bits is 0 or 1, and we determined this with just one query to
the oracle. Thus, the quantum query complexity is 1, which is an improvement over
the classical query complexity of 2. While the improvement in query complexity
from 2 to 1 may be small, it is our first concrete example of a quantum computer
outperforming a classical computer.

Note in Deutsch’s algorithm, we never learned the values of b0 and b1 them-
selves, which would require two oracle queries. Instead, we only learned whether
they are equal or opposite, which corresponds to even or odd parity, respectively.

Exercise 7.5. There are two unknown bits b0 and b1, and you want to find the parity of the two bits
by querying an oracle. Go to https://bit.ly/2ILe3cF. By following this link, you should
have access to a custom gate called U f . This is the oracle, and it acts on two qubits by

https://bit.ly/2ILe3cF
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|y〉
Uf

|y ⊕ f(x)〉
|x〉 |x〉

For this problem, the function f (x) returns bit x, so f (x) = bx.
(a) In Quirk, use Deutsch’s algorithm to find the parity of b0 and b1 using just one query to U f .

Note you will need to prepare the answer qubit so that it is in the minus state.
(b) In Quirk, query U f in such a way as to find b0.
(c) In Quirk, query U f in such a way as to find b1.
(d) Since you now know b0 and b1 from parts (b) and (c), find their parity. Verify that it agrees

with your result from part (a).
(e) In the worst case, how many queries does it take to solve the problem classically?

Exercise 7.6. There are two unknown bits b0 and b1, and you want to find the parity of the two bits
by querying an oracle. Go to https://ibm.co/3GxSWTT. By following this link, you should
have access to a custom gate called U f :

This is the oracle, and it acts on two qubits by

|y〉
Uf

|y ⊕ f(x)〉
|x〉 |x〉

For this problem, the function f (x) returns bit x, so f (x) = bx.
(a) Program Deutsch’s algorithm in IBM Quantum, and use the quantum simulator to find the

parity of b0 and b1.
(b) Run the circuit on an actual quantum processor using IBM Quantum. Which processor did

you use, and what histogram of results do you get?

Exercise 7.7. Say you are trying to use Deutsch’s algorithm, but you neglect the last Hadamard
gate. That is, you apply

|0⟩ H−→ |+⟩
U f−→ 1√

2

[
(−1) f (0)|0⟩+(−1) f (1)|1⟩

]
.

If you measure the system now, what possible states do you get, and with what probabilities?

7.2.4 Generalization to Additional Bits

What if we have n bits b0,b1, . . . ,bn−1, and we want to find their parity? Classically,
we need to know all n bits, so it takes n queries. Quantumly, we can use Deutsch’s
algorithm to find the parity of pairs of bits:

https://ibm.co/3GxSWTT
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b0,b1︸ ︷︷ ︸
parity

,b2,b3︸ ︷︷ ︸
parity

, . . .bn−2,bn−1︸ ︷︷ ︸
parity

.

This takes n/2 queries. Then we can take the XOR of all these parities to get the
parity of all the bits. This takes no additional queries. So, the quantum query com-
plexity is n/2, which is half classical query complexity. Note both the classical and
quantum runtimes are O(n), however, so there is no improvement in their asymptotic
scaling.

Exercise 7.8. You have eight bits, and using Deutsch’s algorithm, you have found the parities of
pairs of bits, shown below:

b0,b1︸ ︷︷ ︸
1

,b2,b3︸ ︷︷ ︸
1

,b4,b5︸ ︷︷ ︸
0

,b6,b7︸ ︷︷ ︸
1

.

(a) What is the parity of all eight bits?
(b) How many queries to the oracle did it take to find the parity of all eight bits?
(c) In the worst case, how many queries does it take to solve the problem classically?

Exercise 7.9. You have nine bits, and using Deutsch’s algorithm, you have found the parities of
the first four pairs of bits. Then you queried the oracle for the last bit, revealing whether it’s a 1 or
a 0. This is shown below:

b0,b1︸ ︷︷ ︸
0

,b2,b3︸ ︷︷ ︸
1

,b4,b5︸ ︷︷ ︸
0

,b6,b7︸ ︷︷ ︸
0

, b8︸︷︷︸
1

.

(a) What is the parity of all nine bits?
(b) How many queries to the oracle did it take to find the parity of all nine bits?
(c) In the worst case, how many queries does it take to solve the problem classically?

7.3 Constant vs Balanced Functions

7.3.1 The Problem

In this problem, we have a function f (x) that takes as input a binary number x =
xn−1 . . .x1x0 of length n and outputs 0 or 1. Mathematically, we can write this as f :
{0,1}n→{0,1}, where {0,1}n denotes bit strings of length n. We additionally have
the promise that f is constant (always outputs 0 or always outputs 1) or balanced
(outputs 0 half the time, and outputs 1 half the time), and the problem is to determine
which we have. Put another way, f outputs 1 none of the time, all of the time, or
half of the time, and the task is to determine if it is none or all of the time (constant)
or half of the time (balanced).

For example, the following function on binary strings of length 3 (i.e., on 3 bits)
is balanced since it outputs 0 half the time and 1 the other half of the time:
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x2 x1 x0 f (x)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Note n = 1 is Deutsch’s algorithm since the input is a single bit, and if the func-
tion is constant, the parity is 0 or even, and if the function is balanced, the parity is 1
or odd. So the Deutsch-Jozsa algorithm can be seen as a generalization of Deutsch’s
algorithm.

7.3.2 Classical Solution

Classically, to determine with certainty whether f is constant or balanced, we need
to query half the inputs, plus one, in the worst case scenario. That is, if we query
half the inputs and get zero each time, then we still do not know if just half the
outputs are zero, or if all the outputs are zero. Querying one more input resolves
this. Since there are 2n possible inputs (binary strings of length n), the classical
query complexity is 2n−1 +1. Note this scales exponentially in n, i.e., it is O(2n).

In practice, however, one may accept a classical algorithm that guesses the cor-
rect answer most of the time. For example, say we query f with c = 10 different
random inputs, and we get f = 0 each time. Then, we can guess that f is constant
with some degree of certainty. As we will show next, the probability that our guess
is wrong can be made smaller than any constant using some suitable constant value
for c. Then, such a randomized algorithm can solve the problem with just c queries,
which is O(1).

To show this, say we classically query f for c different random inputs. If we
get the same output every time, we guess that f is constant, and if we get a mix of
0’s and 1’s, we guess that f is balanced. Let us calculate the probability that these
guesses are incorrect. First, if f is constant, we will get the same output for all c
of our inputs, and we will correctly guess that f is constant, so there is no error
in this case. If f is balanced and the c outputs are any mix of 0’s and 1’s, we will
correctly guess that f is balanced, so there is no error in this case, either. If f is
balanced and all c of our outputs are the same, however, we will incorrectly guess
that f is constant, which is an error. Let us find the probability of this error. Say
all c of our outputs are 0, but f is actually balanced. To get the first 0, there are
2n/2 = 2n−1 outputs that are 0 out of a total of 2n outputs, so the probability of
getting a 0 is 2n−1/2n. For the second 0, there are 2n−1− 1 outputs remaining that
are 0 out of a total of 2n−1 outputs remaining, so the probability of getting a second
0 is (2n−1−1)/(2n−1). Continuing this reasoning, the probability of getting c zeros
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is

2n−1

2n
2n−1−1
2n−1

2n−1−2
2n−2

. . .
2n−1− (c−1)
2n− (c−1)

≈ 2n−1

2n
2n−1

2n
2n−1

2n . . .
2n−1

2n

=
1
2

1
2

1
2
. . .

1
2
=

1
2c ,

where in the second line, we have approximated the expression for large n. Similarly,
the probability of all c queries yielding 1 even though f is balanced is also 1/2c.
Together, the total probability of incorrectly guessing that f is constant when it is
actually balanced is

1
2c +

1
2c =

1
2c−1 .

This does not depend on n. So, we can bound the error by checking an appropriate
number of inputs. For example, if we want the probability of error to be less than
1%, we only need to query f for c = 8 different inputs, and this is a constant number
of queries regardless of n. Thus, this randomized algorithm takes O(1) queries of f .

From Exercise 1.53, problems that are efficiently solved with bounded error by
such randomized algorithms are contained in the complexity class bounded-error
probabilistic polynomial time (BPP). It is believed that P=BPP, but it is not proven.
Since we gave an efficient randomized algorithm for determining whether f is con-
stant or balanced, this problem is in BPP.

To review, for a classical computer to determine with certainty whether f is con-
stant or balanced, it needs 2n−1 + 1 queries to f in the worst case, which is O(2n).
For a probabilistic classical computer to guess the answer with bounded error, it
only needs a constant number of queries to f , which is O(1).

Exercise 7.10. When determining if an oracle f is constant or balanced,
(a) What is the probability of an error if you evaluate f for c = 7 different inputs?
(b) What is the probability of an error if you evaluate f for c = 8 different inputs?
(c) How many times should f be evaluated to reduce the error probability to less than 0.1%?

7.3.3 Quantum Solution: Deutsch-Jozsa Algorithm

A quantum computer using the Deutsch-Jozsa algorithm can determine with cer-
tainty whether f is constant or balanced using just 1 query to f . This is an exponen-
tial speedup over the exact classical algorithm, but no speedup over the bounded-
error probabilistic classical algorithm.

The Deutsch-Jozsa algorithm is very similar to Deutsch’s algorithm, but we now
have n qubits (plus an answer qubit, which we ignore by using a phase oracle). These
n qubits are initially each in the |0⟩ state, and we apply Hadamards to put them in
a superposition of all n-bit strings. Then, we query the oracle on this superposition.
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Finally, we apply Hadamards to all the qubits to create a state that we measure,
and whose measurement outcome allows us to distinguish whether the function is
constant or balanced. Including the answer qubit, the Deutsch-Jozsa algorithm as a
quantum circuit is

|−〉

Uf

|0〉 H H

|0〉 H H

...
...

...
...

|0〉 H H


n

Let us work out the math to show why this determines whether f is constant or
balanced. Ignoring the answer qubit, we begin with n qubits, all in the |0⟩ state. First
applying the Hadamard gate to each of these n qubits, we get

|0⟩⊗n H⊗n
−−→ |+⟩⊗n

=
1√
2n

(|0⟩+ |1⟩)⊗n

=
1√
2n ∑

x∈{0,1}n
|x⟩. (7.1)

So, applying Hadamards to the all zero state creates a uniform superposition over
all binary strings. Next, we query the phase oracle:

1√
2n ∑

x∈{0,1}n
|x⟩

U f−→ 1√
2n ∑

x∈{0,1}n
(−1) f (x)|x⟩.

Finally, we again apply the Hadamard gate to each of the n qubits:

1√
2n ∑

x∈{0,1}n
(−1) f (x)|x⟩ H⊗n

−−→ 1√
2n ∑

x∈{0,1}n
(−1) f (x)H⊗n|x⟩. (7.2)

This is the final state of the algorithm before the measurement, and to interpret this,
let us focus on just one H⊗n|x⟩, where |x⟩ is a single n-bit string:

H⊗n|x⟩= H⊗n|xn−1 . . .x1x0⟩
= H|xn−1⟩ . . .H|x1⟩H|x0⟩.

Depending on whether xi is 0 or 1, H|xi⟩ is either |+⟩ or |−⟩. To account for the
difference in sign between |+⟩ and |−⟩, we can write H|xi⟩ as

H|xi⟩=
1√
2

[
|0⟩+(−1)xi |1⟩

]
.
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This way, when xi = 0, (−1)xi = 1, and the result is |+⟩, and when xi = 1, (−1)xi =
−1, and the result is |−⟩. Writing each H|xi⟩ like this, we get

H|x0⟩H|x1⟩ . . .H|xn−1⟩

=
1√
2

[
|0⟩+(−1)xn−1 |1⟩

]
. . .

1√
2

[
|0⟩+(−1)x1 |1⟩

] 1√
2

[
|0⟩+(−1)x0 |1⟩

]
.

Multiplying out the terms, this becomes

1√
2n

[
|0 . . .000⟩+(−1)x0 |0 . . .001⟩+(−1)x1 |0 . . .010⟩

+(−1)x1(−1)x0 |0 . . .011⟩+(−1)x2 |0 . . .100⟩+(−1)x2(−1)x0 |0 . . .101⟩

+(−1)x2(−1)x1 |0 . . .110⟩+(−1)x2(−1)x1(−1)x0 |0 . . .111⟩+ . . .
]
.

Writing (−1)x1(−1)x0 as (−1)x1+x0 , and similarly elsewhere, we get

1√
2n

[
|0 . . .000⟩+(−1)x0 |0 . . .001⟩+(−1)x1 |0 . . .010⟩

+(−1)x1+x0 |0 . . .011⟩+(−1)x2 |0 . . .100⟩+(−1)x2+x0 |0 . . .101⟩

+(−1)x2+x1 |0 . . .110⟩+(−1)x2+x1+x0 |0 . . .111⟩+ . . .
]
.

This is a sum over all n-bit strings |z⟩= |zn−1 . . .z1z0⟩, so it becomes

1√
2n ∑

z∈{0,1}n
(−1)∑i:zi=1 xi |z⟩.

For the negative sign, the power is the sum of the values of xi such that zi = 1. We
can also write this sum using the dot product x · z,

x · z = xn−1zn−1 + · · ·+ x1z1 + x0z0.

In this dot product, the only xi’s that survive are those where zi = 1. Using this
notation, we get

H⊗n|x⟩= 1√
2n ∑

z∈{0,1}n
(−1)x·z|z⟩. (7.3)

Plugging this into Eq. (7.2), the final state of the algorithm before measurement is

1√
2n ∑

x∈{0,1}n
(−1) f (x)H⊗n|x⟩= 1√

2n ∑
x∈{0,1}n

(−1) f (x) 1√
2n ∑

z∈{0,1}n
(−1)x·z|z⟩

= ∑
z∈{0,1}n

(
1
2n ∑

x∈{0,1}n
(−1) f (x)+x·z

)
|z⟩. (7.4)
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To see how measuring this state lets us determine whether the function is constant or
balanced, let us calculate the probability of getting all zeros |0 . . .00⟩. The amplitude
of |0 . . .00⟩ (right before measurement) is

1
2n ∑

x∈{0,1}n
(−1) f (x).

This amplitude depends on whether f (x) is constant or balanced:

• If f (x) is constant, then f (x) always outputs the same value, so f (x)= f (0 . . .00)
for all x, and the amplitude is

1
2n ∑

x∈{0,1}n
(−1) f (0...00) =

1
2n (−1) f (0...00)2n = (−1) f (0...00).

Taking the norm-square of this, if f (x) is constant, the probability of measuring
|0 . . .00⟩ is 1.

• If f (x) is balanced, then (−1) f (x) is 1 half the time and −1 the other half the
time, so the amplitude is 0. Hence, if f (x) is balanced, the probability of mea-
suring |0 . . .00⟩ is 0, so we are guaranteed to get something other than |0 . . .00⟩
when we measure.

Thus, to determine if f is constant or balanced, we measure the n qubits, and if we
get |0 . . .00⟩, the function is constant, and if we get anything else, the function is
balanced.

Exercise 7.11. Apply H⊗H⊗H to |000⟩, and show that the resulting state is a uniform superpo-
sition of all binary strings of length 3. If you measure the qubits, what possible outcomes can you
get, and with what probabilities?

Exercise 7.12. There is a function on three bits f (b2,b1,b0), with the promise that the function
is constant or balanced. You want to determine which by querying an oracle. Go to https:
//bit.ly/38P0Nig. By following this link, you should have access to a custom gate called
U f . This is the oracle, and it acts on four qubits by

|y⟩

Uf

|y ⊕ f(b2, b1, b0)⟩
|b0⟩ |b0⟩
|b1⟩ |b1⟩
|b2⟩ |b2⟩

(a) In Quirk, use the Deutsch-Jozsa algorithm to determine whether f (x) is constant or balanced
using just one query to U f . Note you will need to prepare the answer qubit so that it is in the
minus state.

(b) In Quirk, query U f in various ways to determine f (b2,b1,b0):

https://bit.ly/38P0Nig
https://bit.ly/38P0Nig
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b2 b1 b0 f (b2,b1,b0)
0 0 0 ?
0 0 1 ?
0 1 0 ?
0 1 1 ?
1 0 0 ?
1 0 1 ?
1 1 0 ?
1 1 1 ?

(c) Since you now know f (b2,b1,b0) completely from part (b), verify that it agrees with your
result from part (a).

(d) In the worst case, how many queries does it take to solve the problem classically?

Exercise 7.13. There is a function on three bits f (b2,b1,b0), with the promise that the function
is constant or balanced. You want to determine which by querying an oracle. Go to https:
//ibm.co/3EWbltg. By following this link, you should have access to a custom gate called
U f . This is the oracle, and it acts on four qubits by

|y⟩

Uf

|y ⊕ f(b2, b1, b0)⟩
|b0⟩ |b0⟩
|b1⟩ |b1⟩
|b2⟩ |b2⟩

(a) Program the Deutsch-Jozsa algorithm in IBM Quantum, and use the quantum simulator to
determine if f (b0,b1,b2) is constant or balanced.

(b) Run the circuit on an actual quantum processor using IBM Quantum. Which processor did
you use, and what histogram of results do you get?

7.4 Secret Dot Product String

7.4.1 The Problem

Deutsch’s algorithm and the Deutsch-Jozsa algorithm both followed the same steps:
apply Hadamard gate(s), query the oracle, apply Hadamard gate(s) again, and then
measure. Since this worked so well, are there any other problems that can be solved
by this procedure?

The answer is yes. There is another problem that a quantum computer can solve
using this procedure, and it is finding a secret n-bit string by querying an oracle
that takes the dot product of the string with the input. That is, we again have a
function f that takes as input a binary string of length n and outputs 0 or 1, so
f : {0,1}n→ {0,1}. But now the promise is that f (x) = s · x, where s is some n-bit
string sn−1 . . .s1s0, and the dot product of s and x is the sum of the products of their
elements, i.e.,

s · x = sn−1xn−1 + · · ·+ s1x1 + s0x0.

The problem is to find s, which means finding sn−1 . . .s1s0.

https://ibm.co/3EWbltg
https://ibm.co/3EWbltg
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7.4.2 Classical Solution

Since we need to determine all n bits of s, the classical solution requires n queries,
one to learn each bit of s. For example, if n = 4, then

f (0001) = s3(0)+ s2(0)+ s1(0)+ s0(1) = s0,

f (0010) = s3(0)+ s2(0)+ s1(1)+ s0(0) = s1,

f (0100) = s3(0)+ s2(1)+ s1(0)+ s0(0) = s2,

f (1000) = s3(1)+ s2(0)+ s1(0)+ s0(0) = s3.

It is known that a bounded-error probabilistic algorithm must also take at least n
queries to f , but the details are beyond the scope of this textbook.

7.4.3 Quantum Solution: Bernstein-Vazirani Algorithm

Quantumly, we only need one query using the Bernstein-Vazirani algorithm, which
is a polynomial speedup over classical computers. It follows the exact same steps
as the Deutsch-Jozsa algorithm, where we apply Hadamards, query the oracle, and
then apply Hadamards again, so as a quantum circuit, it is

|−〉

Uf

|0〉 H H

|0〉 H H

...
...

...
...

|0〉 H H


n

Let us work out the math to show that this works. Ignoring the answer qubit,
from Eq. (7.4), the state of the n qubits before measurement is

∑
z∈{0,1}n

(
1
2n ∑

x∈{0,1}n
(−1) f (x)+x·z

)
|z⟩.

For the problem of the secret dot product string, f (x) = s · x. Plugging this in, we
get

∑
z∈{0,1}n

(
1
2n ∑

x∈{0,1}n
(−1)(s+z)·x

)
|z⟩.

where s+z denotes bitwise addition (no carry), also known as bitwise XOR. That is,
(s+ z)i = si⊕ zi. Now we measure this, and to determine the possible measurement
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outcomes, let us consider the amplitude of getting |s⟩. When z = s, s+ z is a bit
string of all zeros. Then the amplitude of |s⟩ is

1
2n ∑

x
(−1)0 =

1
2n ∑

x
1 =

1
2n 2n = 1.

Thus, normalization implies that the amplitude of all other states is 0, so the final
state of the qubits is

|s⟩.

Measuring this is certain to yield |s⟩, and we have determined s with just one query
to the oracle.

This is a polynomial speedup over the O(n) queries needed by a classical com-
puter. The above speedup holds for bounded error, so it yields an oracle separa-
tion between the complexity classes P and BQP. However, the problem is efficient
for both classical and quantum computers. The next algorithm, Simon’s algorithm,
gives the first “true” exponential speedup, where the problem is inefficient for a
classical computer, but efficient for a quantum computer, in the number of oracle
queries.

Exercise 7.14. There is a function on six bits f (b5,b4,b3,b2,b1,b0) = s5b5 + · · ·+ s1b1 + s0b0.
Find s = s5 . . .s1s0 by querying an oracle. Go to https://bit.ly/31YCBZu. By following
this link, you should have access to a custom gate called U f . This is the oracle, and it acts on seven
qubits by

|y〉

Uf

|y ⊕ f(b5, . . . , b0)〉
|b0〉 |b0〉
|b1〉 |b1〉
|b2〉 |b2〉
|b3〉 |b3〉
|b4〉 |b4〉
|b5〉 |b5〉

(a) In Quirk, use the Bernstein-Vazirani algorithm to determine s using just one query to U f . Note
you will need to prepare the answer qubit so that it is in the minus state.

(b) In Quirk, query U f in various ways to determine each bit of s. Verify that it agrees with your
result from part (a).

(c) In the worst case, how many queries does it take to solve the problem classically?

Exercise 7.15. There is a function on four bits f (x3,x2,x1,x0) = s3x3 + s2x2 + s1x1 + s0x0. Find
s = s3s2s1s0 by querying an oracle. Go to https://ibm.co/3INITfq. By following this link,
you should have access to a custom gate called U f . This is the oracle, and it acts on five qubits by

https://bit.ly/31YCBZu
https://ibm.co/3INITfq
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|y〉

Uf

|y ⊕ f(x3, . . . , x0)〉
|x0〉 |x0〉
|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 |x3〉

(a) Program the Bernstein-Vazirani algorithm in IBM Quantum, and use the quantum simulator
to find s = s3s2s1s0.

(b) Run the circuit on an actual quantum processor using IBM Quantum. Which processor did
you use, and what histogram of results do you get?

Exercise 7.16. In the Bernstein-Vazirani algorithm, recall the final state of the qubits (before mea-
surement) is

1
2n ∑

z∈{0,1}n

(
∑

x∈{0,1}n
(−1)(s+z)·x

)
|z⟩.

Say n= 3 and consider z ̸= s such that s+z= 001 (using bitwise addition). Show that the amplitude
of this choice of |z⟩ is zero by filling in the following table, and then computing the sum of the last
column.

x (s+ z) · x (−1)(s+z)·x

000 ? ?
001 ? ?
010 ? ?
011 ? ?
100 ? ?
101 ? ?
110 ? ?
111 ? ?

∑
x
(−1)(s+z)·x: ?

7.4.4 Recursive Problem

The problem of finding a hidden dot product string can be made recursive, meaning
we embed the problem in a bigger instance of the problem, which is embedded in
a bigger instance of the problem, and so forth. The details are beyond the scope of
this textbook, but if we have k levels, then a classical computer takes Ω(nk) queries
to solve the problem (recall from Section 1.7.1 that big-Ω is a lower bound, so a
classical computer takes at least this many queries). In contrast, a quantum com-
puter using a recursive version of the Bernstein-Vazirani algorithm, however, can
solve this problem with 2k queries. If we have k = log2(n) levels, then the classi-
cal algorithm takes Ω(nlogn) queries, which is bigger than any polynomial. We call
this superpolynomial. The quantum computer, however, only takes n queries, which
is linear and efficient. Thus, the recursive version of the hidden dot product string
problem shows that a quantum computer can yield a superpolynomial speedup in
queries. This speedup, however, is less than exponential. Next, we will see a prob-
lem with an exponential speedup.
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7.5 Secret XOR Mask

7.5.1 The Problem

In this problem, the oracle takes as input an n-bit string x = xn−1 . . .x1x0 and outputs
an n-bit string f (x) = fn−1 . . . f1 f0. That is, f : {0,1}n→ {0,1}n. We are promised
that

f (x) = f (y)

if and only if the two inputs x and y are related by

x = y⊕ s, and y = x⊕ s

for some “secret” n-bit string s= sn−1 . . .s1s0 ̸= 0 . . .00, where⊕ denotes the bitwise
XOR. That is, f (x) = f (y) if and only if

xi = yi⊕ si, and yi = xi⊕ si.

The goal is to find the secret n-bit string s = sn−1 . . .s1s0. The secret bit string is
called a mask, and since it is used to XOR the inputs, it is called an XOR mask. The
problem is to find the secret XOR mask s = sn−1 . . .s1s0.

For example, say n = 3 and s = 110. Then, for each value of x, x⊕ s is shown in
the following table:

x x⊕ s
000 110
001 111
010 100
011 101
100 010
101 011
110 000
111 001

Notice these come in pairs. That is, 000 and 110 are a pair, 001 and 111 are a pair,
010 and 100 are a pair, and 011 and 101 are a pair. This is because if y = x⊕ s, then
it is automatically true that x = y⊕ s. As a proof, we start with

y = x⊕ s.

Next, if we XOR both sides with s, we get

y⊕ s = x⊕ s⊕ s.

Since s⊕ s = 0, this is
y⊕ s = x⊕0.

Thus,
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y⊕ s = x,

or reversing the two sides, x = y⊕ s. Now, from the promise about the oracle, for
each pair x and y, f (x) and f (y) must be the same. For example, here are two possi-
ble truth tables for f (x), satisfying that f (x) = f (y) if and only if y = x⊕ s:

x f (x)
000 011
001 101
010 001
011 000
100 001
101 000
110 011
111 101

x f (x)
000 110
001 001
010 111
011 000
100 111
101 000
110 110
111 001

Notice that in both examples, f (000)= f (110), f (001)= f (111), f (010)= f (100),
and f (011) = f (101). Also note there are 1680 different possible truth tables for
f (x). This is because we have four pairs that we need to assign outputs to, and there
are 23 = 8 different outputs. For the first pair, we have 8 choices of outputs. For the
second pair, we have 7 choices of outputs. For the third pair, we have 6 choices of
outputs. And for the fourth pair, we have 5 choices of outputs. Altogether, we have
8 ·7 ·6 ·5 = 1680 possible permutations.

Exercise 7.17. Say n = 3 and s = 010.
(a) Find the pairs of n-bit strings x and y such that y = x⊕ s.
(b) Give a possible truth table for f (x) that satisfies the promise that f (x) = f (y) if and only if

y = x⊕ s.

7.5.2 Classical Solution

Classically, we can find the secret XOR mask s by finding a collision, meaning a
pair x and y such that f maps them to the same string, i.e., f (x) = f (y). From the
promise about f , this implies that x = y⊕ s and y = x⊕ s, and we can take the XOR
of x and y to find s:

x⊕ y = x⊕ (x⊕ s) = (x⊕ x)︸ ︷︷ ︸
0

⊕s = s.

One approach is to trying the inputs one-by-one until we find a collision. In the
worst case, we could try half of the inputs without yet seeing a collision. We are
guaranteed, however, that trying one more input will yield a collision, so the query
complexity with this approach is O(2n−1 +1).

We can do better, however. If we query f with random inputs. This prevents f
from being designed to be as worse as possible as previously described, where half
the inputs, plus 1, must be queried to find a collision. Now, say we have queried
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f a total of k times, so we have k values of f . The probability of there being a
collision in these k values of f is given by the number of pairs of values, which is
the combination kC2 = k(k−1)/2 = O(k2). Since this grows quadratically with the
number of queries, one expects to query f roughly

√
2n = 2n/2 times in order to find

a collision. Although this is an improvement, it is still exponential in n.

Exercise 7.18. We have an oracle f : {0,1}n → {0,1}n with a secret XOR mask s. Say n = 4.
Querying the oracle with some various inputs, we find that f (1011) = 0010 and f (0111) = 0010.
What is s?

Exercise 7.19. The task of finding a collision is closely related to a famous problem called the
birthday problem, which is to find the probability that in a room of n people, at least two of them
share the same birthday. We ignore leap years, so there are 365 days in a year. We also assume that
people’s birthdays are randomly distributed. In reality, this is not true, as some birthdays are more
common than others, but this only makes a shared birthday more likely.

To solve this problem, we find the probability that the n people do not share any birthdays. Then,
the probability that at least two people share the same birthday is 1 minus this. To calculate the
probability that no one shares a birthday, we add people to the room one-by-one. The first person
in the room does not share a birthday with anyone else because there is no one else. The second
person in the room has 364 possible birthdays so as to not share a birthday with the first person,
and the probability of this is 364/365. The third person in the room has 363 possible birthdays
so as to not share a birthday with the first two people, and the probability of this is 363/365. The
fourth person has 362 possible birthdays to avoid sharing, which has a probability of 362/365.
Continuing this, the probability of no one sharing a birthday is

364
365

363
365

362
365
· · · 365− (n−1)

365
.

Multiplying this by 365/365, we get

365
365

364
365

363
365

362
365
· · · 365− (n−1)

365
=

365 ·364 ·363 ·362 · . . . · (365− (n−1))
365n .

Thus, the probability that at least two people share the same birthday is

1− 365 ·364 ·363 ·362 · . . . · (365− (n−1))
365n .

This can be calculated using a computer algebra system. For example, with n = 23 people,

• Using Mathematica,

n=23;
1 - Product[i/365., {i, 365-(n-1), 365}]

The Product function multiplies (365− (n−1))/365 up through 365/365, and the output
of 1 minus this product is 0.507297.

• Using SageMath,

sage: n=23
sage: 1 - prod(i/365. for i in ((365-(n-1))..365))
0.507297234323986

The prod function multiplies (365− (n−1))/365 up through 365/365.

So, there is over a 50% chance that at least two people share the same birthday. This may be higher
than one might expect, so some call the birthday problem the birthday paradox.
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(a) With n = 30, what is the probability that at least two of them share the same birthday?
(b) With n = 40, what is the probability that at least two of them share the same birthday?
(c) With n = 50, what is the probability that at least two of them share the same birthday?
(d) With n = 60, what is the probability that at least two of them share the same birthday?

7.5.3 Quantum Solution: Simon’s Algorithm

Simon’s algorithm follows the pattern we have seen so far: apply Hadamards, query
the oracle, and apply Hadamards again. But now we have n input qubits and n an-
swer qubits, and we start each of the answer qubits in the |0⟩ state (so we are using
the regular quantum oracle, not the phase oracle). For the oracle, it maps

|x⟩|y⟩
U f−→ |x⟩|y⊕ f (x)⟩,

where

|x⟩= |xn−1 . . .x1x0⟩,
|y⟩= |yn−1 . . .y1y0⟩,
|y⊕ f (x)⟩= |yn−1⊕ fn−1, . . . ,y1⊕ f1,y0⊕ f (x0)⟩.

Another difference with Simon’s algorithm is that we will measure all the qubits,
not just the input qubits.

The quantum circuit for Simon’s algorithm is

|0⟩

Uf

|0⟩
...

...
...

...

|0⟩

|0⟩ H H

|0⟩ H H

...
...

...
...

|0⟩ H H


n


n

Let us work through the math of what this does. Initially, we have two n-qubit reg-
isters, one for the input qubits, and another for the answer qubits.

|0 . . .00⟩|0 . . .00⟩.
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Now, we apply the Hadamard gate to each of the input qubits, resulting in

|+ · · ·++⟩|0 . . .00⟩.

Multiplying out the |+⟩ states, we get a uniform superposition over n-bit strings:

1√
2n ∑

x∈{0,1}n
|x⟩|0 . . .00⟩.

Next, querying the oracle, we get

1√
2n ∑

x∈{0,1}n
|x⟩| f (x)⟩.

Now, we again apply the Hadamard gate to each of the input qubits, resulting in

1√
2n ∑

x∈{0,1}n
H⊗n|x⟩| f (x)⟩.

From Eq. (7.3), H⊗n|x⟩ is a uniform superposition of bit strings |z⟩ multiplied by a
phase of (−1)x·z, so we get

1√
2n ∑

x∈{0,1}n

1√
2n ∑

z∈{0,1}n
(−1)x·z|z⟩| f (x)⟩.

Now, let us measure the answer qubits. We will get one particular value of f (x). Let
us call the value f ′. There are two values of x for which f (x) = f ′. Let us call them
x′ and x′′. That is, f (x′) = f (x′′) = f ′. So, x′ and x′′ are a pair of inputs for which
there is a collision. Then, the state will collapse to these two values of x:

1√
2

1√
2n ∑

z∈{0,1}n

[
(−1)x′·z +(−1)x′′·z

]
|z⟩
∣∣ f ′〉.

Note the first coefficient went from 1/
√

2n to 1/
√

2 because the number of possible
outcomes for x went from 2n (all possible bit strings) to 2 (|x′⟩ and |x′′⟩). Combining
the coefficients,

1√
2n+1 ∑

z∈{0,1}n

[
(−1)x′·z +(−1)x′′·z

]
|z⟩
∣∣ f ′〉.

Next, we measure the input qubits. To determine the possible results, note that
(−1)x′·z = ±1 and (−1)x′′·z = ±1 depending on what x′ and x′′ are. Then, their
sum is either ±2 or 0:

(−1)x′·z +(−1)x′′·z =

{
±2, x′ · z = x′′ · z mod 2,
0, x′ · z ̸= x′′ · z mod 2.



296 7 Quantum Algorithms

Thus, when measuring the input qubits, we only get a value of |z⟩ where

x′ · z = x′′ · z mod 2.

Adding x′′ · z to both sides, we get

x′ · z+ x′′ · z = x′′ · z+ x′′ · z mod 2.

The right-hand side of this equation is 0 because if we add any bit to itself modulo
2, we get 0. Thus,

x′ · z+ x′′ · z = 0 mod 2.

Factoring the left-hand side,

(x′+ x′′) · z = 0 mod 2.

Since x′ and x′′ are a pair of inputs for which there is a collision, x′⊕ x′′ = s. Then,
we have

s · z = 0 mod 2.

Thus, when measuring the input qubits, we get a value of |z⟩ = |zn−1 . . .z1z0⟩ such
that its dot product with s is 0 mod 2. Writing out the dot product,

sn−1zn−1 + · · ·+ s1z1 + s0z0 = 0 mod 2. (7.5)

This is an equation containing all n of our unknowns, the si’s.
If we repeat this process, we will get a |z⟩= |zn−1 . . .z1z0⟩ that satisfies Eq. (7.5)

and is likely different from the first because there are an exponential number of
them. To see this, the probability of measuring any such |z⟩ is∣∣∣∣ ±2√

2n+1

∣∣∣∣2 = 4
2n+1 =

1
2n−1 .

Or, put another way, there are 2n−1 possible |z⟩’s whose dot product with s is zero,
and we have the same probability of getting each one.

Repeating the quantum algorithm O(n) times, we can get n different |z⟩’s, each
satisfying Eq. (7.5). Together, they are a system of n equations and n unknowns,
which we can solve for the si’s. Thus, we can find s with O(n) queries to the oracle,
and this was the first exponential oracle separation between classical and quantum
computers.

Exercise 7.20. You are using Simon’s algorithm to find an n = 3 bit string s = s2s1s0. You run the
quantum circuit three times, and you get the following values for |z⟩, such that s · z = 0 mod 2:

|001⟩, |110⟩, |111⟩,

What is s?

Exercise 7.21. You are using Simon’s algorithm to find an n = 8 bit string s = s7s6s5s4s3s2s1s0.
(a) How many different values of |z⟩ are there, such that s · z = 0 mod 2?
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(b) If you run the quantum circuit three times, what is the probability that all three values of |z⟩
are different?

7.5.4 Summary

We have examined several quantum algorithms that all follow the same proce-
dure: apply Hadamards, query the oracle, and apply Hadamards again. The follow-
ing table summarizes the problems, query complexities, and asymptotic quantum
speedups:

Problem Classical Quantum Quantum Asymptotic
Queries Algorithm Queries Speedup

n-bit Parity n Deutsch n/2 None

Constant Exact: 2n−1 +1 Deutsch-Jozsa 1 Exponential
vs Balanced Bounded: O(1) None

Dot Product String n Bernstein-Vazirani 1 Polynomial

Recursive
Ω(nlog2 n)

Recursive
n SuperpolynomialDot Product String Bernstein-Vazirani

XOR Mask O(2n/2) Simon O(n) Exponential

We started with the parity problem. The quantum algorithm does offer an improve-
ment in that it takes half as many queries, but asymptotically, both the classical and
quantum algorithms are O(n), so there is no speedup in that sense. Then, we looked
at determining whether the oracle is constant or balanced. Although the quantum
algorithm yields an exponential improvement over the exact classical algorithm, it
is no improvement over the bounded algorithm that is often acceptable in practice.
For a true asymptotic speedup, the problem of finding a secret dot product string
is solved by a quantum computer using polynomially fewer queries, and a recur-
sive version of the problem is solved with superpolynomially fewer queries. Finally,
finding a secret XOR mask takes exponentially fewer queries on a quantum com-
puter, which shows that for oracular problems, quantum computers can yield an
exponential speedup.

7.6 Brute-Force Searching

7.6.1 The Problem

Before moving on to problems where we can calculate the circuit complexity, let us
discuss one more oracular problem where we count the number of oracle queries.
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It is the problem of brute-force searching. We again have a function f that takes as
input a binary string of length n and outputs 0 or 1, so f : {0,1}n → {0,1}. This
function, however, only outputs 1 for one input, so it outputs 0 for all other inputs.
The problem is to find this one special input, which we will call w (for winner).

A common motivation for this problem is searching a telephone book, which is
a list of people in alphabetical order along with each person’s telephone number:1

Name Phone Number
Alice 314-1592
Bob 271-8281
Charlie 105-4571
Dave 885-4187
Eve 125-6637
Frank 299-7924
Grace 729-7352

...
...

Zoe 200-2319

Given a name, it is easy to find the corresponding phone number, since the names
are sorted in alphabetical order. For example, we can start in the middle of the list
and determine if the person we are looking for is in the first half or the last half of
the phone book. Say it is the first half. Then we can look at the middle entry of this
half of the phone book and determine if the person we are looking for is in the first
quarter or second quarter of the list. Repeating this, we reduce the number entries by
one-half each time until we find the entry we are looking for. This process is called
binary search, and if the number of entries is N, it takes at most log2 N steps.

The inverse problem, however, is harder to do. Given a phone number, say 299-
7924, finding the name it corresponds to is harder since the numbers are unsorted.
In fact, we might need to look though every phone number until we find a match.
This inverse problem is the brute-force searching problem that we want to solve, and
a classical computer needs O(N) queries to solve it. This problem is also phrased
as searching an unordered database, and it is also called unstructured searching. In
terms of a function, we have f (name) = number, and we want to find the name. So,
this is also the problem of inverting a function, i.e., of starting with an output and
trying to find the input.

It is possible to have a function or oracle that recognizes the correct answer, even
if it does not know what the correct answer is. For example, it is generally hard to
factor numbers (see Section 6.6.2 on RSA cryptography), but it is easy to verify
if the product of numbers equals the number we are trying to factor. Recall from
Section 1.7.2 that the problems whose possible solutions are easy to check comprise
the complexity class NP. So, brute-force searching includes trying to solve problems
in NP by checking each input to see which output is correct.

1 These phone numbers are inspired by the mathematical constants π and e, and the physical
constants h̄, ε0, µ0, c, α , and gs.
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7.6.2 Classical Solution

Classically, we must query all N = 2n possible bit strings in the worst case. Or on
average, we must query half the bit strings, or N/2, since it is equally likely that the
winner is the first input as the last. Either way, the classical runtime is O(N).

7.6.3 Quantum Solution: Grover’s Algorithm

A quantum computer can solve the brute-force searching problem using only
O(
√

N) queries using Grover’s algorithm. Ignoring the answer qubit, the algorithm
begins with the qubits all in the |+⟩ state. Let us call this starting state |s⟩. From
Eq. (7.1), this is a uniform superposition over all n-bit strings:

|s⟩= |+⟩⊗n =
1√
N ∑

x∈{0,1}n
|x⟩,

where N = 2n. We can create this initial state by applying Hadamard gates to the all-
zeros state, i.e., |+⟩⊗n = H⊗n|0⟩⊗n. Since the initial state is a uniform superposition
over all n-bit strings, it includes the binary string |w⟩ we are trying to find, and all
the other ones:

|s⟩= 1√
N

(
|w⟩+ ∑

i ̸=w
|i⟩
)

=
1√
N
|w⟩+ 1√

N ∑
i̸=w
|i⟩

=
1√
N
|w⟩+

√
N−1

N
1√

N−1 ∑
i̸=w
|i⟩︸ ︷︷ ︸

|r⟩

=
1√
N
|w⟩+

√
N−1

N
|r⟩

= sinθ |w⟩+ cosθ |r⟩,

where |r⟩ is defined as the uniform superposition over all n-bit strings that are not
|w⟩, and θ is defined such that

sinθ =
1√
N
, cosθ =

√
N−1

N
.

Drawing the initial state in a coordinate plane with |r⟩ and |w⟩ as the x- and y-axes,
we get
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|r〉

|w〉

|s〉

θ

Next, we query the phase oracle U f . Since f (x) = 1 only when x = w, the state
becomes

U f |s⟩= (−1)1 sinθ |w⟩+(−1)0 cosθ |r⟩
=−sinθ |w⟩+ cosθ |r⟩.

Thus, the amplitude of |w⟩ is inverted. Drawn in the coordinate plane, this is equiv-
alent to a reflection through |w⟩:

|r〉

|w〉

|s〉

θ

Uf |s〉
θ

Next, we apply a quantum gate Rs that reflects about |s⟩ (more on how to do this,
and how to interpret it, later). Drawn in the rw-plane,

|r〉

|w〉

|s〉

θ

Uf |s〉
θ

RsUf |s〉

2θ

We see that the net effect of these two reflections is a rotation by 2θ . If we apply U f
and Rs again, we rotate by 2θ again:
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|r〉

|w〉

|s〉

θ

Uf |s〉
θ

RsUf |s〉

2θ

(RsUf )
2|s〉

2θ

In this manner, we keep rotating by 2θ by applying U f and Rs until the final state is
close to |w⟩. Say this takes a total of t rotations. Then, since the angle between |r⟩
and |w⟩ is 90◦, or π/2 radians,

θ + t(2θ) =
π

2

t(2θ) =
π

2
−θ

t =
π

4θ
− 1

2
.

Assuming N is large,

θ = sin−1
(

1√
N

)
≈ 1√

N
,

and so
t ≈ π

4

√
N− 1

2
≈ π

4

√
N.

Thus, the number of queries is O(
√

N), which is a quadratic speedup over the clas-
sical computer’s O(N).

The angle of the final state may not be exactly π/2, so the success probability
may not be exactly 1. This is not an issue, however, for a couple of reasons. First,
for large N, the angle θ is small. So, the final state may only miss |w⟩ by a small
amount. Second, there are ways to adjust this algorithm so that the last step rotates
by a different angle, causing the final state to be exactly aligned with |w⟩. This is
beyond the scope of this textbook.

Including the answer qubit, as a quantum circuit, Grover’s algorithm is
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|−⟩

Uf Uf Uf

|+⟩

Rs Rs Rs

|+⟩
... · · · ...

|+⟩

|+⟩


n

Exercise 7.22. Prove that when N = 4 (n = 2), the final state of Grover’s algorithm is exactly |w⟩.

Exercise 7.23. Answer the following questions about Grover’s algorithm:
(a) When the n qubits are in their initial state (all |+⟩ states), if you measure the qubits, what is

the probability that you get |w⟩? Express your answer in terms of N = 2n.
(b) Say you apply just one step of Grover’s algorithm (one query U f and one reflection Rs). If

you measure the qubits after this one step, what is the probability that you get |w⟩? Express
your answer in terms of N = 2n. Hint: In the rw-plane, the amplitude of the state in |w⟩ is the
sine of the angle between the state and |r⟩.

Exercise 7.24. Go to https://bit.ly/3qoOErN. By following this link, you should have
access to the custom gates U f and Rs. U f is the oracle, and it acts on five qubits by

|y〉

Uf

|y ⊕ f(x3, . . . , x0)〉
|x0〉 |x0〉
|x1〉 |x1〉
|x2〉 |x2〉
|x3〉 |x3〉

Rs acts on four qubits, and it reflects about |s⟩.
(a) What is n?
(b) What is N?
(c) For this problem, how many queries does Grover’s algorithm take?
(d) Using Quirk, implement Grover’s algorithm and find |w⟩.
(e) Using Quirk, query U f in various ways to fill out the following table:

https://bit.ly/3qoOErN
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x f (x)
0000 ?
0001 ?
0010 ?
0011 ?
0100 ?
0101 ?
0110 ?
0111 ?
1000 ?
1001 ?
1010 ?
1011 ?
1100 ?
1101 ?
1110 ?
1111 ?

Do your results agree with your answer to part (d)?

7.6.4 Reflection About Uniform State

Now, let us explore the reflection about |s⟩, which we denoted Rs. Since we want |s⟩
to be unchanged, but states perpendicular to |s⟩ to be reflected (i.e., take on a minus
sign), we can write Rs as

Rs = 2|s⟩⟨s|− I.

Recall from Section 3.4 that the outer product |s⟩⟨s| is a matrix, and I is the identity
matrix that acts on n qubits, so it is N×N in size. Let us show that this keeps |s⟩
the same, but flips any state |s⊥⟩ that is orthogonal to |s⟩, as we expect a reflection
about |s⟩ to do:

Rs|s⟩= 2|s⟩⟨s|s⟩︸︷︷︸
1

−|s⟩= 2|s⟩− |s⟩= |s⟩,

Rs|s⊥⟩= 2|s⟩⟨s|s⊥⟩︸ ︷︷ ︸
0

−|s⊥⟩=−|s⊥⟩.

To write Rs in terms of elementary gates, which also proves that it is a valid
quantum gate, recall

|s⟩= |+⟩⊗n = H⊗n∣∣0⊗n〉= H|0⟩ . . .H|0⟩.

Then, taking the dual using Eq. (3.1),

⟨s|= ⟨0|H† . . .⟨0|H† = ⟨0|H . . .⟨0|H =
〈
0⊗n∣∣H⊗n,

where we used the fact that H† = H. Plugging these into Rs,
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Rs = 2H⊗n|0n⟩⟨0n|H⊗n− I.

We can also write the n-qubit identity matrix as

I = I⊗·· ·⊗ I = HH⊗·· ·⊗HH = (H⊗·· ·⊗H)(H⊗·· ·⊗H) = H⊗nH⊗n.

Plugging this into Rs, we get

Rs = 2
(
H⊗n|0n⟩

)(
⟨0n|H⊗n)−H⊗nH⊗n

= H⊗n (2|0n⟩⟨0n|− I)︸ ︷︷ ︸
R0

H⊗n

= H⊗nR0H⊗n,

where we have defined another operator

R0 = 2|0n⟩⟨0n|− I.

We will discuss R0 in a moment, but the point is that Rs is equal to R0 surrounded
by Hadamards on both sides:

Rs

H

R0

H

H H

=
...

...

H H

H H

Now for R0, let us calculate how it acts on the all 0’s state |0n⟩ and how it acts
any other state |a⟩:

R0|s⟩= 2|0n⟩⟨0n|0n⟩︸ ︷︷ ︸
1

−|0n⟩= 2|0n⟩− |0n⟩= |0n⟩,

R0|a⟩= 2|0n⟩⟨0n|a⟩︸ ︷︷ ︸
0

−|a⟩=−|a⟩.

Thus, R0 is a reflection about the all zeros state |0n⟩. To create a circuit for R0, recall
Z|0⟩= |0⟩ and Z|1⟩=−|1⟩. Then the following circuit flips the sign of the all ones
state |1 . . .1⟩ only:
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•

•
...

•

Z

If we multiply this on both sides by X gates, the resulting circuit will flip the sign of
the all zeros state |0 . . .0⟩ only:

X • X

X • X

...
...

...

X • X

X Z X

But, we want the all zeros state to be unchanged, while all other states are flipped.
Using Exercise 2.27, we use ZXZX to flip the sign of the top qubit, which flips the
sign of the entire state.

X • X X Z X Z

X • X

...
...

...
...

...
...

...

X • X

X Z X

Using X2 = I, R0 is

R0

X • Z X Z

X • X

=
...

...
...

X • X

X Z X

So, we have a quantum circuit for R0. By “sandwiching” this between Hadamard
gates, we get Rs. Then, we can implement Grover’s algorithm.
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Exercise 7.25. Go to https://bit.ly/3pZacec. By following this link, you should have
access to the custom gate U f . This is the oracle, and it acts on six qubits in the usual way.

(a) What is n?
(b) What is N?
(c) For this problem, many queries does Grover’s algorithm take?
(d) Using Quirk, create a custom gate for R0.
(e) Using Quirk, create a custom gate for Rs.
(f) Using Quirk, implement Grover’s algorithm and find |w⟩.

7.6.5 Optimality

It is proven that a quantum computer cannot solve the brute-force problem faster
than O(

√
N), so Grover’s algorithm is optimal, the best that a quantum computer can

do. Then, if it takes a classical computer an exponential number of queries to solve
a problem in NP, a quantum computer also takes an exponential number of queries
(albeit a smaller exponential). This is because the square root of an exponential is
still an exponential, e.g.,

√
2n = 2n/2. Thus, quantum computers cannot brute-force

solve NP problems by simply checking all the answers in superposition. If quantum
computers can solve NP problems efficiently, they would have to exploit some other
structure of the problems besides the fact that their potential solutions are efficiently
checkable. All evidence, however, suggests that quantum computers cannot solve
NP problems.

7.7 Discrete Fourier Transform

7.7.1 Application: Analyzing Music

We have finished exploring oracular algorithms. For the rest of this chapter, we
will explore problems where quantum computers have a better gate complexity than
classical computers, meaning the number of elementary gates/steps is less.

In this section, we will explore a method of analyzing data that has wide appli-
cations in science, engineering, and technology: the discrete Fourier transform. To
introduce it, let us look at a specific application: analyzing music and sound.

Sound is vibration. The pluck of a guitar string, flutter of our vocal chords, or
pulse of a speaker causes air molecules to vibrate. These vibrations reverberate
through subsequent air molecules, eventually reaching our ears. A diagram of an
ear is shown below:

https://bit.ly/3pZacec
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Image credit: Adapted from https://commons.wikimedia.org/wiki/File:

Anatomy_of_the_Human_Ear_blank.svg

The air in the ear canal carries these vibrations to the eardrum, a stretchy mem-
brane, causing it to vibrate. The vibrations continue through three bones, the small-
est in the human body, called ossicles. The third ossicle rests on the oval window,
another stretchy membrane, and the vibrations transmit through it into the cochlea,
a spiral-shaped hollow bone. Inside the cochlea are tiny hair receptors that convert
the vibrations into nerve signals that are sent to the brain’s hearing center and inter-
preted as sound.2

The following waveform shows the vibrations of a piano playing a C major chord
(made of middle C and the E and G notes above it) for one second:

0 0.2 0.4 0.6 0.8 1
Time (s)

-1

-0.5

0

0.5

1

A
m

p
li

tu
d
e

The details of the vibrations are hard to see, so let us zoom in to the first 0.05
seconds:

2 In the 2013 Academy Award-winning film Gravity, many of the scenes are silent because there
is no air in space to transmit sound.

https://commons.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear_blank.svg
https://commons.wikimedia.org/wiki/File:Anatomy_of_the_Human_Ear_blank.svg
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You can download a WAV file of the one-second piano tune at https://tinyur
l.com/2p86zew6. The WAV file, and the previous waveforms, consists of 44100
points for the one second of sound, and we say that the sound was sampled at a rate
of 44100 Hertz (Hz), or 44100 points per second. Since the first plot is one second
long, it has 44100 points, and since the second plot is 0.05 seconds long, it contains
2205 points. The 44100 points can be downloaded from https://tinyurl.com/

jsavt7ez, and they begin and end with the following (x,y) coordinates:

0.00000,-0.46933
0.00002,-0.46011
0.00005,-0.44931
0.00007,-0.41455
0.00009,-0.38632
0.00011,-0.34164
0.00014,-0.28851

...
0.99993,0.12177
0.99995,0.12454
0.99998,0.13571

Now, say we want to find the frequencies that make up the previous C chord, which
correspond to the pitches or notes that make up the sound. If we let the num-
ber of samples be N = 44100 and label the previous amplitudes a0 = −0.46933,
a1 = −0.46011, . . . , aN−1 = 0.13571, then the discrete Fourier transform of the
waveform is a sequence of N points φ0, φ1, . . . , φN−1 defined to be

φk =
1√
N

N−1

∑
j=0

a je2πi jk/N . (7.6)

For example,

φ0 =
1√

44100

(
−0.46933e2πi(0)(0)/44100−0.46011e2πi(1)(0)/44100 + . . .

+0.13571e2πi(44099)(0)/44100
)
=−0.0973861,

φ1 =
1√

44100

(
−0.46933e2πi(0)(1)/44100−0.46011e2πi(1)(1)/44100 + . . .

https://tinyurl.com/2p86zew6
https://tinyurl.com/2p86zew6
https://tinyurl.com/jsavt7ez
https://tinyurl.com/jsavt7ez


7.7 Discrete Fourier Transform 309

+0.13571e2πi(44099)(1)/44100
)
=−0.118737+0.136405i,

φ2 =
1√

44100

(
−0.46933e2πi(0)(2)/44100−0.46011e2πi(1)(2)/44100 + . . .

+0.13571e2πi(44099)(2)/44100
)
=−0.106039+0.0597867i,

...

φ44098 =
1√

44100

(
−0.46933e2πi(0)(44098)/44100−0.46011e2πi(1)(44098)/44100 + . . .

+0.13571e2πi(44099)(44098)/44100
)
=−0.106039−0.0597867i

φ44099 =
1√

44100

(
−0.46933e2πi(0)(44099)/44100−0.46011e2πi(1)(44099)/44100 + . . .

+0.13571e2πi(44099)(44099)/44100
)
=−0.118737−0.136405i.

Calculating these by hand would be incredibly tedious, as each φk contains 44100
terms in its sum. In the next subsection, we will discuss how to calculate these
using a computer algebra system. For now, let us continue interpreting these num-
bers. Notice φ1 is the complex conjugate of φ44099. Similarly, φ2 is the complex
conjugate of φ44098, and so forth, through φ22051 = φ ∗22049. That is, φk = φ ∗N−k for
k = 1,2, . . . ,N/2− 1, so φ0 and φN/2 are unique. In general, the φk’s are complex
numbers. Let us take the norm of each of them. We get

|φ0|= 0.097386
|φ1|= 0.180844
|φ2|= 0.121732

...
|φ44098|= 0.121732
|φ44099|= 0.180844.

Due to the symmetry of the discrete Fourier transform, |φ1| = |φ44099|, |φ2| =
|φ44098|, etc. Plotting k on the x-axis and |φk| on the y-axis with k = 0,1, . . . ,22050,
we get the frequency spectrum of the waveform:
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This is hard to read, so let us zoom into the first 1000 points of the x-axis:
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Here, the x-axis corresponds to the frequency, which is measured in Hertz (Hz) and
corresponds to the pitch, so a higher frequency is a higher pitch note. The y-axis
corresponds to the strength of note, so there are several frequencies that are stronger
than the rest. The biggest is around 262 Hz. This corresponds to Middle C on the
piano, which has a frequency of 261.6256 Hz. There is another large spike around
330 Hz, and this corresponds to the E key on the piano above Middle C, and this has
a frequency of 329.6276 Hz. Beyond that, there is another spike at 392 Hz, and this
corresponds to the next G key on the piano, which has a frequency of 391.9954 Hz.
These three piano keys were pressed in order to create the music, so they contribute
strongly to the sound. Note the other prominent frequencies are resonances of these
three fundamental frequencies, and they occur at integer multiples of the aforemen-
tioned frequencies. For example, the spike at 522 Hz is twice Middle C’s 262 Hz,
the spike at 660 Hz is twice the E key’s 330 Hz, the spike at 784 Hz is roughly three
times Middle C’s 262 Hz and twice the G key’s 392 Hz, and the spike at 990 Hz is
three times the E key’s 330 Hz.

Exercise 7.26. Consider a sequence of four points

a0 = 0.841,

a1 = 0.909,

a2 = 0.141,

a3 =−0.757.

Calculate the discrete Fourier transform of this (i.e., φ0, φ1, and φ2) using Eq. (7.6). You may use
a calculator, but not a computer algebra system.
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Exercise 7.27. Visit https://en.wikipedia.org/wiki/Piano_key_frequencies
and answer the following questions:

(a) What is the scientific name for the E key above Middle C, which has a frequency of 329.6276
Hz?

(b) What is the frequency of the A4 key?

7.7.2 Classical Solution: Fast Fourier Transform

Calculating just one φk using Eq. (7.6) requires adding together N terms. Since there
are N different φk’s, altogether, this is a total of N2 terms. Although this O(N2) run-
time is efficient in the language of computational complexity, since it is a polynomial
in N, in practice, it can be quite slow because of the large number of points that a
long audio recording can contain.

Another way to interpret Eq. (7.6) is as a matrix-vector multiplication. To write
it more cleanly, let us define ω = e2πi/N . Then, Eq. (7.6) becomes

φk =
1√
N

N−1

∑
j=0

a jω
jk.

For example,

φ0 =
1√
N
(a0 +a1 +a2 + · · ·+aN−1) ,

φ1 =
1√
N

(
a0 +a1ω +a2ω

2 + · · ·+aN−1ω
N−1) ,

φ2 =
1√
N

(
a0 +a1ω

2 +a2ω
4 + · · ·+aN−1ω

2(N−1)
)
,

...

φN−1 =
1√
N

(
a0 +a1ω

N−1 +a2ω
2(N−1)+ · · ·+aN−1ω

(N−1)2
)
.

These equations can be written as
φ0
φ1
φ2
...

φN−1

=


1 1 1 . . . 1
1 ω ω2 . . . ωN−1

1 ω2 ω4 . . . ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) . . . ω(N−1)2




a0
a1
a2
...

aN−1

 . (7.7)

Thus, the discrete Fourier transform can be interpreted as a matrix that acts on a
vector of amplitudes. Although this is useful conceptually, it is just as slow as using

https://en.wikipedia.org/wiki/Piano_key_frequencies
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Eq. (7.6) directly, since we must calculate all N2 terms of the matrix, and then do
the matrix-vector multiplication.

Fortunately, faster classical algorithms for the discrete Fourier transform exist
that only take O(N logN) steps. These are called fast Fourier transform (FFT) al-
gorithms. The precise workings of these algorithms are beyond the scope of this
textbook, but they are used by computer algebra systems like Mathematica and
SageMath.

First, download the waveform from https://tinyurl.com/jsavt7ez. It is a
csv file, which stands for comma-separated values. Its contents are the 44100 (x,y)
points of the waveform:

0.00000,-0.46933
0.00002,-0.46011
0.00005,-0.44931
0.00007,-0.41455
0.00009,-0.38632
0.00011,-0.34164
0.00014,-0.28851

...
0.99993,0.12177
0.99995,0.12454
0.99998,0.13571

Say the filename is waveform.csv.

• Place waveform.csv in the same folder as the Mathematica notebook. Then,
we can import these points into Mathematica using

wave = Import["waveform.csv"];

In the variable wave, the first column of numbers is the time of each sample,
and the second column is the amplitude. We can just get the amplitudes using
wave[[;;,2]], and we can take the discrete Fourier transform of these ampli-
tudes using the Fourier command:

ft = Fourier[wave[[;;,2]]];

Finally, we can plot the first 1000 points of the frequency spectrum using the
following command:

ListPlot[Transpose[{Table[i, {i, 0, 999}], Abs[ft
↪→ [[1;;1000]]]}],

PlotRange -> All, Joined -> True]

Above, Table[i, {i, 0, 999}] creates a list of numbers 0,1, . . . ,999, and it
serves as the x-axis of the frequency spectrum. Then, ft[[1;;1000]] lists the
first 1000 points of the discrete Fourier transform, and Abs takes their absolute
values, and this is the y-axis of the frequency spectrum. We combine these into
a list that contains all the x-coordinates followed by all the y-coordinates, and
then we take the transpose to obtain a list of (x,y) coordinates, which we then
plot using ListPlot. The parameter PlotRange -> All ensures that we can
see the full y-axis, and Joined -> True joins the points of the scatter plot.

https://tinyurl.com/jsavt7ez
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• Place waveform.csv in the same folder as the SageMath instance. In Sage-
Math, we import the points using

sage: import csv
sage: file = open("waveform.csv","r")
sage: wave = list(csv.reader(file, quoting=csv.

↪→ QUOTE_NONNUMERIC))

The variable wave contains the (time, amplitude) coordinates of the waveform.
To calculate the discrete Fourier transform, we only want the amplitudes. To
get them, we create an empty array called amps of size 44100 using the FFT

command, and then we go through wave and copy its amplitudes to the variable
amp:

sage: amps = FFT(44100)
sage: for j in range(44100):
....: amps[j] = wave[j][1]

Next, we calculate the discrete Fourier transform using the forward transform

function. Note this does not include the overall factor of 1/
√

N in Eq. (7.6), so
we will need to include it later.

sage: amps.forward_transform()

Now, we want to plot the first 1000 points of the frequency spectrum. To do this,
we create an empty list of 1000 (x,y) coordinates. The x coordinates are just the
frequencies 0,1, . . . ,999, and the y-coordinates are |φk|2, which we divide by√

N because the forward transform function did not include 1/
√

N.

sage: freq = [[0,0] for k in range(1000)]
sage: for j in range(1000):
....: freq[j][0] = j
....: freq[j][1] = abs(vector(amps[j])) / sqrt(44100)

Finally, we plot the frequency spectrum:

sage: list_plot(freq, plotjoined=true)
Launched png viewer for Graphics object consisting of 1

↪→ graphics primitive

The graph should pop up.

Exercise 7.28. A one-second recording of a piano playing a triad (a three-note chord), sampled
at 44100 Hz, is available at https://tinyurl.com/43yzv7s3, and the waveform can be
downloaded at https://tinyurl.com/hebe2tj9. Using a computer algebra system, an-
swer the following.

(a) Plot the first 1000 points of the frequency spectrum of the waveform.
(b) Determine the frequencies of the three keys that make up the chord. You can estimate them

off the plot.
(c) Visit https://en.wikipedia.org/wiki/Piano_key_frequencies. Using your

answers to part (b), what are the scientific names of the three keys?

https://tinyurl.com/43yzv7s3
https://tinyurl.com/hebe2tj9
https://en.wikipedia.org/wiki/Piano_key_frequencies
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7.7.3 Quantum Solution: Quantum Fourier Transform

In the last section, we showed in Eq. (7.7) that the discrete Fourier transform can
be written as a matrix-vector multiplication. It turns out that the N ×N matrix is
unitary, so it is a valid quantum gate, which we call the quantum Fourier transform
(QFT). Later, we will show how to implement this using single-qubit and two-qubit
quantum gates, which proves that the QFT is unitary. Alternatively, Exercise 7.29
outlines the proof that QFT†QFT = I. Then, if

|ψ⟩=


a0
a1
a2
...

aN−1

= a0|0⟩+ · · ·+aN−1|N−1⟩

is a normalized quantum state, then applying the QFT yields another normalized
quantum state

|φ⟩=


φ0
φ1
φ2
...

φN−1

= φ0|0⟩+ · · ·+φN−1|N−1⟩.

We call |φ⟩ the quantum Fourier transform of |ψ⟩. Put another way, using Eq. (7.6),
the QFT transforms the state

|ψ⟩=
N−1

∑
j=0

a j| j⟩ −→ |φ⟩=
N−1

∑
k=0

φk|k⟩=
1√
N

N−1

∑
k=0

N−1

∑
j=0

a je2πi jk/N |k⟩.

Examining the above equation, the QFT transforms basis states from

| j⟩ −→ 1√
N

N−1

∑
k=0

e2πi jk/N |k⟩. (7.8)

The QFT is a large quantum gate acting on n qubits, whose general state has
N = 2n amplitudes. We want to implement it, however, using single-qubit and two-
qubit gates. From Section 4.6, the Solovay-Kitaev theorem says we can decompose
a n-qubit gate into a universal gate set up to precision ε using Θ(2n logc(1/ε))
gates, for some constant c. Or, since N = 2n, this is Θ(N logc(1/ε)). Compared to
the classical fast Fourier transform algorithms, which run in O(N logN) time, the
quantum implementation could be a little better or worse by logarithmic factors,
depending on the constant c. This is not the kind of speedup we desire.

Fortunately, there is a more clever way to implement the QFT using single-qubit
and two-qubit gates, and it only takes O(log2 N) of them, which is an exponential
speedup in circuit complexity over the classical fast Fourier transform algorithms.
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To construct this implementation, we express j as an n-bit binary number:

j = jn−1 jn−2 . . . j1 j0

= jn−12n−1 + jn−22n−2 + · · ·+ j12+ j0.

Then, j/N can be represented using a binary point, which is like a decimal point,
but in base 2:

j
N

=
jn−12n−1 + jn−22n−2 + · · ·+ j12+ j0

2n

=
jn−1

2
+

jn−2

22 + · · ·+ j1
2n−1 +

j0
2n

= 0. jn−1 jn−2 . . . j1 j0.

Similarly, we can express k as an n-bit binary number:

k = kn−1kn−2 . . .k1k0

= kn−12n−1 + kn−22n−2 + · · ·+ k12+ k0.

Using these, the exponential in Eq. (7.8) is

e2πi jk/N = e2πi( j/N)k

= e2πi(0. jn−1 jn−2... j1 j0)(kn−12n−1+kn−22n−2+···+k12+k0)

= e2πi(0. jn−1 jn−2... j1 j0)kn−12n−1
e2πi(0. jn−1 jn−2... j1 j0)kn−22n−2

. . .

× e2πi(0. jn−1 jn−2... j1 j0)k12e2πi(0. jn−1 jn−2... j1 j0)k0

= e2πi( jn−1 jn−2... j1. j0)kn−1e2πi( jn−1 jn−2... j2. j1 j0)kn−2 . . .

× e2πi( jn−1. jn−2... j1 j0)k1e2πi(0. jn−1 jn−2... j1 j0)k0 .

We can drop all the bits left of the binary point. To see why, take for example the
first exponential in the previous line:

e2πi( jn−1 jn−2... j1. j0)kn−1 = e2πi( jn−12n−2+ jn−22n−3... j1+ j0/2)kn−1

= e2πi jn−12n−2kn−1︸ ︷︷ ︸
1

e2πi jn−22n−3kn−1︸ ︷︷ ︸
1

. . .e2πi j1kn−1︸ ︷︷ ︸
1

e2πi j0/2kn−1

= e2πi0. j0kn−1 .

The exponentials are 1 because they are either e0 = 1 or e2πim = 1 for some positive
integer m. Dropping all the bits left of the binary point, we have

e2πi jk/N = e2πi(0. j0)kn−1e2πi(0. j1 j0)kn−2 . . .

× e2πi(0. jn−2... j1 j0)k1e2πi(0. jn−1 jn−2... j1 j0)k0 .
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Plugging this into Eq. (7.8), we get

| j⟩ → 1√
N

N−1

∑
k=0

e2πi jk/N |k⟩

=
1√
N

N−1

∑
k=0

e2πi(0. j0)kn−1e2πi(0. j1 j0)kn−2 . . .

× e2πi(0. jn−2... j1 j0)k1e2πi(0. jn−1 jn−2... j1 j0)k0 |k⟩.

Since we are summing over all n-bit binary numbers k, each bit kn−1,kn−2, . . . ,k0
sums through 0 and 1, so this becomes

1√
N

1

∑
kn−1=0

. . .
1

∑
k0=0

e2πi(0. j0)kn−1e2πi(0. j1 j0)kn−2 . . .

× e2πi(0. jn−2... j1 j0)k1e2πi(0. jn−1 jn−2... j1 j0)k0 |kn−1 . . .k0⟩.

Since |kn−1 . . .k0⟩ is shorthand for |kn−1⟩ . . . |k0⟩, we can move the terms to get

1√
N

1

∑
kn−1=0

. . .
1

∑
k0=0

e2πi(0. j0)kn−1 |kn−1⟩e2πi(0. j1 j0)kn−2 |kn−2⟩ . . .

× e2πi(0. jn−2... j1 j0)k1 |k1⟩e2πi(0. jn−1 jn−2... j1 j0)k0 |k0⟩.

Moving the summations,

1√
N

1

∑
kn−1=0

e2πi(0. j0)kn−1 |kn−1⟩
1

∑
kn−2=0

e2πi(0. j1 j0)kn−2 |kn−2⟩ . . .

×
1

∑
k1=0

e2πi(0. jn−2... j1 j0)k1 |k1⟩
1

∑
k0=0

e2πi(0. jn−1 jn−2... j1 j0)k0 |k0⟩.

Since e0 = 1, if we evaluate the sums, we get

1√
N

(
|0⟩+ e2πi(0. j0)|1⟩

)(
|0⟩+ e2πi(0. j1 j0)|1⟩

)
. . .

×
(
|0⟩+ e2πi(0. jn−2... j1 j0)|1⟩

)(
|0⟩+ e2πi(0. jn−1 jn−2... j1 j0)|1⟩

)
.

Finally, since
√

N =
√

2n = (
√

2)n, we get the product state

1√
2

(
|0⟩+ e2πi(0. j0)|1⟩

) 1√
2

(
|0⟩+ e2πi(0. j1 j0)|1⟩

)
. . . (7.9)

× 1√
2

(
|0⟩+ e2πi(0. jn−2... j1 j0)|1⟩

) 1√
2

(
|0⟩+ e2πi(0. jn−1 jn−2... j1 j0)|1⟩

)
.
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This is another way of stating the definition of the QFT, but in binary. If we can
create a quantum circuit that converts | j⟩= | jn−1 . . . j0⟩ to Eq. (7.9), we will have a
quantum circuit for the QFT.

Let us now prove that we can create a circuit for the QFT using Hadamard gates
and controlled rotations. Consider the rightmost term of Eq. (7.9). To begin con-
structing it, we apply the Hadamard gate to | jn−1⟩:

H| jn−1⟩=
1√
2

(
|0⟩+(−1) jn−1 |1⟩

)
=

1√
2

(
|0⟩+(eiπ) jn−1 |1⟩

)
=

1√
2

(
|0⟩+ e2πi jn−1/2|1⟩

)
=

1√
2

(
|0⟩+ e2πi(0. jn−1)|1⟩

)
.

Next, consider a single-qubit gate that rotates about the z-axis of the Bloch sphere
by 2π/2r radians, which we call Rr. It acts on basis states by

Rr|0⟩= |0⟩,

Rr|1⟩= e2πi/2r |1⟩,

and its matrix representation is

Rr =

(
1 0
0 e2πi/2r

)
.

After the previous Hadamard matrix, we apply R2 to qubit n−1, controlled by qubit
n−2. That is, for the state of qubit n−1, the amplitude of |1⟩ is multiplied by e2πi/22

if jn−2 = 1, and nothing happens otherwise. That is, the state of the (n−1)th qubit
goes from

1√
2

(
|0⟩+ e2πi(0. jn−1)|1⟩

)
→ 1√

2

(
|0⟩+ e2πi(0. jn−1)(e2πi/22

) jn−2 |1⟩
)

=
1√
2

(
|0⟩+ e2πi(0. jn−1)e2πi(0.0 jn−2)|1⟩

)
=

1√
2

(
|0⟩+ e2πi(0. jn−1 jn−2)|1⟩

)
.

Similarly, we can apply R3 to n− 1, controlled by qubit n− 3. Then, the state of
qubit n−1 would be

1√
2

(
|0⟩+ e2πi(0. jn−1 jn−2 jn−3)|1⟩

)
.

Continuing this through Rn, controlled by qubit 0, the state of qubit n−1 is

1√
2

(
|0⟩+ e2πi(0. jn−1 jn−2 jn−3... j0)|1⟩

)
.
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This is the rightmost factor of Eq. (7.9). Similarly, we can apply Hadamard and
controlled-Rr gates to the other qubits to construct the other factors, resulting in the
following quantum circuit:

j0 ... • ... • ... • H kn−1

j1 ... • ... • ... H R2 kn−2

...
...

jn−2 • ... H ... Rn−2 Rn−1 ... k1

jn−1 H R2
... Rn−1 Rn

... ... k0

Note the order of the outputs is reversed, so we need to reverse the order, such as by
using SWAP gates

j0 ... • ... • ... • H × k0

j1 ... • ... • ... H R2 × k1
...

...

jn−2 • ... H ... Rn−2 Rn−1 ... × kn−2

jn−1 H R2
... Rn−1 Rn

... ... × kn−1

This is our quantum circuit for the QFT. For example, with n = 4 qubits,

j0 • • • H × k0

j1 • • H R2 × k1

j2 • H R2 R3 × k2

j3 H R2 R3 R4 × k3

Let us add up the total number of gates in the QFT circuit with n qubits, beginning
with the Hadamard and controlled-Rr gates. The bottom row of the circuit uses n
gates, the row above it uses n−1 gates, and so fourth, until we get to one gate at the
top row. So, the total number of Hadamard and controlled-Rr gates is

n+(n−1)+(n−2)+ · · ·+3+2+1 =
n(n+1)

2
.

The first equality can be obtained by pairing up terms from the outside in. That is,
the first term n and the last term 1 add up to n+1. Similarly, the second term (n−1)
and the second-to-last term 2 add up to n+ 1. Next, the third term (n− 2) and the
third-to-last term 3 add up to n+ 1. Altogether, there are n/2 pairs, so they total
(n/2)(n+1) = n(n+1)/2. There are also n/2 swap gates to reverse the order of the
outputs. Altogether, the total number of single-qubit and two-qubit gates is

n(n+1)
2

+
n
2
= O(n2) = O(log2 N).
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This runtime of O(log2 N) is an exponential speedup over the classical fast Fourier
transform algorithms, which run in O(N logN) time. This speedup, however, comes
with a major caveat. With the classical algorithm, we get all the terms of the discrete
Fourier transform. In contrast, with the QFT, we get a quantum state whose am-
plitudes correspond to the discrete Fourier transform, and we cannot access these
amplitudes all at once. We can only measure the qubits, which yields a bit string
with a probability given by the norm-square of the amplitude. Thus, obtaining ac-
tual speedups using the QFT requires clever application of it, and in the next section,
we will see an example called phase estimation.

Exercise 7.29. The quantum Fourier transform was given as a N×N matrix in Eq. (7.7). In this
problem, we will show that the matrix is unitary, so it is a valid quantum gate. Let M = QFT†QFT
and let Mrs denote the element of matrix M at row r and column s. We want to prove that Mrs = 1
when r = s and Mrs = 0 when r ̸= s, so M is equal to the identity matrix.

(a) Show that

Mrs =
1
N

N−1

∑
k=0

ω
−kr

ω
ks =

1
N

N−1

∑
k=0

ω
k(s−r).

(b) Show that Mrs = 1 when r = s.
(c) Show that Mrs = 0 when r ̸= s. Hint: When r ̸= s, Mrs is a geometric series. You may need

to look up the geometric series formula from Algebra II. Also note that ωmN = e2πim = 1 for
integer m.

Exercise 7.30. In this exercise, we will use Quirk to simulate the quantum Fourier transform on
six qubits. Go to https://bit.ly/3DNKSxl to access the following quantum circuit:

The first part of the QFT circuit, which calculates the Fourier transform of the bottom qubit, has
been done for you. Note the Z gate is a rotation about the x-axis by π radians, so we have the
following relations:

R2 = Z1/2 = S, R3 = Z1/4 = T, R4 = Z1/8, R5 = Z1/16, R6 = Z1/32.

In Quirk, fill in the remainder of the QFT circuit.

Exercise 7.31. Using the IBM Quantum Lab, use the following code to create a quantum circuit
for the QFT:

# Number of qubits.
n = 4

https://bit.ly/3DNKSxl
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# Create a quantum circuit.
qc = QuantumCircuit(n)

# Iterate through each target qubit from (n-1) to 0.
for target in range(n-1,-1,-1):

# Apply the Hadamard gate.
qc.h(target)

# Iterate through the control qubits from (target-1) to 0.
for control in range(target-1,-1,-1):

# Calculate "r," the rotation by 2*pi/2**r.
r = target - control + 1

# Apply the controlled phase/rotation.
qc.cp(2*np.pi/2**r, control, target)

# Swap qubits.
for qubit in range(n//2):

qc.swap(qubit, n - qubit - 1)

# Draw the circuit.
qc.draw()

What circuit is shown? Why is it equivalent to the QFT circuit shown in the textbook?

7.7.4 Inverse Quantum Fourier Transform

The inverse quantum Fourier transform (IQFT) undoes the QFT. Since the QFT
performs the mapping in Eq. (7.8), the IQFT does the reverse:

1√
N

N−1

∑
k=0

e2πi jk/N |k⟩ −→ | j⟩. (7.10)

As a quantum circuit, the IQFT can be performed by reversing the order of the gates
the QFT and replacing them with their inverses:

k0 × H • ... • ... • ... j0

k1 × R†2 H ... • ... • ... j1

...
...

kn−2 × ... R†n−1 R†n−2
... H • ... jn−2

kn−1 × ... ... R†n R†n−1 R†2
... H jn−1

Since quantum gates are unitary, the inverses are their conjugate transposes. Note
SWAP† = SWAP, H† = H, and R†

r is a rotation about the z-axis of the Bloch sphere
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by −2π/2r radians. The IQFT has the same gate complexity as the QFT, which is
O(n2).

Exercise 7.32. Go to https://bit.ly/3kUXfQN to access the following quantum circuit:

Insert the IQFT circuit in the space provided, and verify that it cancels out the QFT gate that is
already present, so the qubits are unchanged. Use single-qubit gates and controls to construct the
circuit, not the QFT† gate that comes with Quirk. Also, note R†

4 = Z−1/8, and this can be made
with the “Formula Z Rotation” in Quirk, which has a label Z f (t).

Exercise 7.33. Modify the code in Exercise 7.31 so that it creates a circuit for the IQFT.

7.8 Phase / Eigenvalue Estimation

7.8.1 The Problem

We learned in Chapter 3 that a quantum gate can be represented by a unitary matrix,
and a quantum state can be represented by a vector. For example, we can use linear
algebra to see how the X gate transforms the state (

√
3/2)|0⟩+(1/2)|1⟩:

X

(√
3

2
|0⟩+ 1

2
|1⟩
)

=

(
0 1
1 0

)(√
3/2

1/2

)
=

(
1/2√
3/2

)
=

1
2
|0⟩+

√
3

2
|1⟩.

Most of the time, when the X gate is applied to a vector, we get a different vector
as the result. There are some special vectors, however, called eigenvectors, where
applying the X gate results in the exact same vector, multiplied by a number called
an eigenvalue. For example, |+⟩ is an eigenvector of the X gate, since if we apply
the X gate to it, we get |+⟩ multiplied by 1, so its eigenvalue is 1:

X |+⟩=
(

0 1
1 0

)(
1/
√

2
1/
√

2

)
=

(
1/
√

2
1/
√

2

)
= |+⟩.

Similarly, |−⟩ is an eigenvector of the X gate with eigenvalue −1, meaning when
we apply the X gate to it, we get |−⟩ multiplied by −1:

X |−⟩=
(

0 1
1 0

)(
1/
√

2
−1/
√

2

)
=

(
−1/
√

2
1/
√

2

)
=−

(
1/
√

2
−1/
√

2

)
=−|−⟩.

https://bit.ly/3kUXfQN
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When the eigenvector is the state of a quantum system, it is often called an eigen-
state. So, |+⟩ and |−⟩ are eigenstates of the X gate.

Although the eigenvectors and eigenvalues of a matrix are very important in
many areas of science, technology, and engineering, including quantum mechan-
ics and quantum computing, the details of their importance are beyond the scope of
this introductory textbook. How to find eigenvectors and eigenvalues of a matrix are
also beyond the scope of this textbook. Instead, we will focus on a specific problem:

Given a unitary matrix U and one of its eigenvectors |v⟩, find or estimate its
eigenvalue.

From linear algebra, it is known that the eigenvalues of a unitary matrix must have
the form eiθ for some real number θ . For this reason, this problem is called phase
estimation, since finding the eigenvalue is equivalent to finding the phase θ .

Exercise 7.34. Consider the Hadamard gate,

H =
1√
2

(
1 1
1 −1

)
.

(a) Verify that
(

1+
√

2
1

)
is an eigenvector of the Hadamard gate with eigenvalue 1.

(b) Verify that
(

1−
√

2
1

)
is an eigenvector of the Hadamard gate with eigenvalue −1.

Exercise 7.35. Consider the following unitary matrix

U =
1√
2


1 0 1 0
0 eiπ/4 0 eiπ/4

1 0 −1 0
0 eiπ/4 0 −eiπ/4

 .

Verify that


0
1
0√

2−1

 is an eigenvector of U with eigenvalue eiπ/4.

7.8.2 Classical Solution

Since we are promised that |v⟩ is an eigenvector of U , and its eigenvalue takes the
form eiθ , then we know that multiplying |v⟩ by U will result in |v⟩multiplied by eiθ ,
i.e.,

U |v⟩= eiθ |v⟩.

If |v⟩ is an N-dimensional vector and U is an N×N matrix, we can write out this
equation as
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U11 U12 . . . U1N
U21 U22 . . . U2N

...
...

. . .
...

UN1 UN2 . . . UNN




v1
v2
...

vN

= eiθ


v1
v2
...

vN

 .

Multiplying out the left-hand side,
U11v1 +U12v2 + · · ·+U1NvN
U21v1 +U22v2 + · · ·+U2NvN

...
UN1v1 +UN2v2 + · · ·+UNNvN

= eiθ


v1
v2
...

vN

 .

We can use any row to find eiθ . For example, using the first row,

U11v1 +U12v2 + · · ·+U1NvN = eiθ v1.

Thus the eigenvalue is

eiθ =
U11v1 +U12v2 + · · ·+U1NvN

v1
.

This takes N multiplications, N−1 additions, and one division, for a total of 2N =
O(N) elementary arithmetic operations.

7.8.3 Quantum Solution

Say the unitary matrix U is an n-qubit quantum gate, so U is an N×N matrix, where
N = 2n. We assume that we have n qubits whose state is the eigenstate |v⟩:

|v⟩︸︷︷︸
n qubits

.

To estimate the phase of its corresponding eigenvalue to m bits of precision, we also
have m additional qubits, all initially in the |0⟩ state:

|0 . . .000⟩︸ ︷︷ ︸
m qubits

|v⟩︸︷︷︸
n qubits

.

So, the total number of qubits in our circuit is m+n. Let us refer to these groupings
as the “eigenvalue register” and the ”eigenstate register,” since the m qubits will
eventually contain an m-bit approximation of the phase of the eigenvalue, and the
n qubits are in the eigenstate |v⟩. To estimate the phase of the eigenvalue, we apply
the following quantum circuit:
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U U2 U4

...

U2m−1
...

...
...

...

n qubits |v〉

 |v〉
|0〉 H • ...

IQFT

jm

|0〉 H • ... jm−1

|0〉 H • ... jm−2

...
...

...
...

...
. . .

|0〉 H ... • j1


m qubits

Let us go through each step of this circuit to see how it works. First, we apply the
Hadamard gate to each qubit of the eigenvalue register, and we get

|++ · · ·+⟩|v⟩= 1√
2
(|0⟩+ |1⟩) 1√

2
(|0⟩+ |1⟩) . . . 1√

2
(|0⟩+ |1⟩) |v⟩

=
1√
2m

(|0⟩+ |1⟩)(|0⟩+ |1⟩) . . .(|0⟩+ |1⟩) |v⟩.

Next, we apply a controlled-U gate, where the rightmost qubit of the eigenvalue
register is the control, and the eigenstate register is the target. Since U |v⟩ = eiθ |v⟩,
this causes the state to acquire a phase of eiθ when the control qubit is |1⟩:

1√
2m

(|0⟩+ |1⟩) . . .(|0⟩+ |1⟩)(|0⟩+ |1⟩)
(
|0⟩+ eiθ |1⟩

)
|v⟩.

Then, we apply the controlled-U2 gate, which cause the second-to-rightmost qubit
of the eigenvalue register to acquire a phase of eiθ twice, which is a phase of e2iθ ,
when the control qubit is |1⟩:

1√
2m

(|0⟩+ |1⟩) . . .(|0⟩+ |1⟩)
(
|0⟩+ e2iθ |1⟩

)(
|0⟩+ eiθ |1⟩

)
|v⟩.

Then, we apply the controlled-U4 gate, which applies a phase of e4iθ :

1√
2m

(|0⟩+ |1⟩) . . .
(
|0⟩+ e4iθ |1⟩

)(
|0⟩+ e2iθ |1⟩

)(
|0⟩+ eiθ |1⟩

)
|v⟩.

Continuing with the controlled gates, we eventually apply controlled-U2m−1
, where

the phase is e2m−1iθ :

1√
2m

(
|0⟩+ e2m−1iθ |1⟩

)
. . .
(
|0⟩+ e4iθ |1⟩

)(
|0⟩+ e2iθ |1⟩

)(
|0⟩+ eiθ |1⟩

)
|v⟩.
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Now, let us change the variables using θ = 2π j, so if we can find j, we simply
multiply it by 2π to find θ . Substituting, the previous state becomes

1√
2m

(
|0⟩+ e2πi2m−1 j|1⟩

)
. . .
(
|0⟩+ e2πi4 j|1⟩

)(
|0⟩+ e2πi2 j|1⟩

)(
|0⟩+ e2πi j|1⟩

)
|v⟩.

Since 0 ≤ θ < 2π , we have 0 ≤ j < 1. Expressing j as an m-bit binary number
0. j1 j2 . . . jm, which is a number less than 1, the state becomes

1√
2m

(
|0⟩+ e2πi( j1 j2... jm−1. jm)|1⟩

)
. . .
(
|0⟩+ e2πi( j1 j2. j3... jm)|1⟩

)
×
(
|0⟩+ e2πi( j1. j2... jm)|1⟩

)(
|0⟩+ e2πi(0. j1... jm)|1⟩

)
|v⟩.

From Section 7.7.3, we can ignore the bits to the left of the binary point because
they contribute multiples of e2πi = 1, so the state is equivalent to

1√
2m

(
|0⟩+ e2πi(0. jm)|1⟩

)
. . .
(
|0⟩+ e2πi(0. j3... jm)|1⟩

)
×
(
|0⟩+ e2πi(0. j2... jm)|1⟩

)(
|0⟩+ e2πi(0. j1... jm)|1⟩

)
|v⟩.

Comparing this to Eq. (7.9), this is precisely the QFT of | j1 j2 . . . jm⟩, so we can find
| j1 j2 . . . jm⟩ by taking the IQFT of the eigenvalue register, resulting in:

| j1 j2 . . . jm⟩|v⟩.

This completes the quantum circuit for phase estimation. After measuring these
qubits and obtaining j1, j2, . . . , jm, we do a little postprocessing. We calculate

j = 0. j1 j2 . . . jm

=
j1
2
+

j2
4
+ · · ·+ jm

2m .

Then, the phase of the eigenvalue is θ = 2π j, and the eigenvalue is eiθ .
To estimate the eigenvalue to m bits of precision, we need m Hadamard gates,

m controlled-U p operations, and an IQFT on m qubits that takes O(m2) gates. Al-
together, the number of gates is O(m2). The classical method takes O(N) = O(2n)
elementary arithmetic operations, so depending on the number of bits of precision
m, the quantum method can be faster, although it assumes we can create |v⟩ and do
controlled-U p operations.

Exercise 7.36. Go to https://tinyurl.com/fdtm5fas to access the following quantum
circuit:

https://tinyurl.com/fdtm5fas
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There are two custom three-qubit gates, v and U . The v gate turns |000⟩ into |v⟩, which is an
eigenstate of U whose eigenvalue we want to estimate to m = 8 bits. The beginning of the phase
estimation circuit has been started for you.

(a) Using two copies of U , use Quirk’s “Make Gate” “From Circuit” to create the gate U2. Then
using two copies of U2, make U4. Continuing, make U8, U16, U32, U64, and U128.

(b) Fill in the rest of the phase estimation circuit. Hint: Use Quirk’s IQFT function, which is
called QFT†, rather than constructing it from scratch.

(c) What is j = 0. j1 j2 . . . j7 as a binary number?
(d) What is j as a decimal number?
(e) What is θ , the phase of the eigenvalue eiθ ?
(f) What is the eigenvalue eiθ .
(g) Explain why your value for eiθ is only an estimate, and the actual value may be slightly

different.

7.8.4 Multiple Eigenstates

Say we have two eigenstates of U , which we call |v1⟩ and |v2⟩, with corresponding
eigenvalues e2πi j1 and e2πi j2 . Say we are using the previous phase estimation algo-
rithm but prepare the eigenstate register in the following superposition of |v1⟩ and
|v2⟩: √

3
2
|v1⟩+

1
2
|v2⟩.

We also have the m qubits that each start in the |0⟩ state, so the initial state of the
phase estimation circuit is
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|0 . . .000⟩
(√

3
2
|v1⟩+

1
2
|v2⟩
)

=

√
3

2
|0 . . .000⟩|v1⟩+

1
2
|0 . . .000⟩|v2⟩.

Following the same calculation as the previous section, the final state of the phase
estimation circuit is

√
3

2
| j1 j2 . . . jm⟩|v1⟩+

1
2

∣∣ j′1 j′2 . . . j′m
〉
|v2⟩,

where 0. j1 j2 . . . jm is an m-bit approximation of j1 and 0. j′1 j′2 . . . j′m is an m-bit ap-
proximation of j2. Then, when we measure the qubits at the end of the circuit, we
get an approximation of j1 with probability 3/4 or an approximation of j2 with
probability 1/4.

Exercise 7.37. Consider three eigenstates of U , |v1⟩, |v2⟩, and |v3⟩, with corresponding eigenvalues
e2πi j1 , e2πi j2 , and e2πi j3 . If we use the phase estimation algorithm but prepare the eigenstate register
in the following state, √

3
2
√

2
|v1⟩+

1√
2
|v2⟩+

1
2
√

2
|v3⟩,

what is the probability that we get an approximation to j1, j2, and j3?

7.9 Period of Modular Exponentiation

7.9.1 The Problem

Recall from Section 6.6.2 that “mod” refers to modulus, or the remainder when
dividing. For example, 15 = 3 mod 12 because 15 divided by 12 has a remainder
of 3. This is also how a twelve-hour clock works, as 15 o’clock corresponds to 3
o’clock.

Modular exponentiation is taking powers of a number modulo some other num-
ber. For example, consider powers of 2 taken modulo 7:

20 mod 7 = 1 mod 7,

21 mod 7 = 2 mod 7,

22 mod 7 = 4 mod 7,

23 mod 7 = 8 mod 7 = 1 mod 7,

24 mod 7 = 16 mod 7 = 2 mod 7,

25 mod 7 = 32 mod 7 = 4 mod 7,

26 mod 7 = 64 mod 7 = 1 mod 7,

27 mod 7 = 128 mod 7 = 2 mod 7,

28 mod 7 = 256 mod 7 = 4 mod 7,
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29 mod 7 = 512 mod 7 = 1 mod 7,
...

Notice the results are 1,2,4, . . . repeated. The period or order r of the modular
exponential is the length of the repeating sequence, so in this example, r = 3. Next,
let us consider another example: powers of 3 taken modulo 10:

30 mod 10 = 1 mod 10,

31 mod 10 = 3 mod 10,

32 mod 10 = 9 mod 10,

33 mod 10 = 27 mod 10 = 7 mod 10,

34 mod 10 = 81 mod 10 = 1 mod 10,

35 mod 10 = 243 mod 10 = 3 mod 10,

36 mod 10 = 729 mod 10 = 9 mod 10,

37 mod 10 = 2187 mod 10 = 7 mod 10,

38 mod 10 = 6561 mod 10 = 1 mod 10,
...

Now, the pattern is 1,3,9,7 repeated, and the period is r = 4. In both of these ex-
amples, the repeated sequences started with a 1. This is always true because a0 = 1
for any positive integer a. Furthermore, the modular exponential ax mod N always
follows a repeated pattern as long as a and N are relatively prime (i.e., their greatest
common divisor is 1, so they share no common factors except 1). This fact comes
from a branch of mathematics called number theory.

Since the repeated sequence always starts with 1, another way to define the period
is as the smallest positive exponent r such that ar mod N = 1 mod N. For example,
with 2x mod 7, r = 3 was the smallest positive exponent to yield 1 mod 7, so it
takes r = 3 terms for the pattern to repeat to 1. For the second example, r = 4 is
the smallest exponent such that 3x mod 10 = 1 mod N. More generally, since the
numbers repeat every r powers, ax+r mod N = ax mod N.

The problem is to find the period of modular exponentials. Since this is a mouth-
ful, we often just call this problem period finding or order finding. Note the period
r must be less than N, and so the challenge is to find the period for large N.

Exercise 7.38. Consider the modular exponential 4x mod 5.
(a) Confirm that 4 and 5 are relatively prime.
(b) Calculate enough terms of 4x mod 5, where x = 0,1,2, . . . , to see a pattern.
(c) What is the sequence that is repeated?
(d) What is the period?

Exercise 7.39. Consider the modular exponential 4x mod 13.
(a) Confirm that 4 and 13 are relatively prime.
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(b) Calculate enough terms of 4x mod 13, where x = 0,1,2, . . . , to see a pattern.
(c) What is the sequence that is repeated?
(d) What is the period?

7.9.2 Classical Solution

Finding a single modular exponent is fast using the repeated squaring method. For
example, say we want to find

9143 mod 131.

We do not want to calculate 9143, as this is a very big number. Instead, we want
to calculate it in pieces, taking it modulo 131 as we go. To do this, we express the
exponent in binary:

43 = 1010112

= 1 ·25 +0 ·24 +1 ·23 +0 ·22 +1 ·21 +1 ·20

= 1 ·32+0 ·16+1 ·8+0 ·4+1 ·2+1 ·1.

So, we want to calculate

9143 mod 131 = 911·32+0·16+1·8+0·4+1·2+1·1 mod 131

= 911·32 910·16 911·8 910·4 911·2 911·1 mod 131

=
(

9132
)1(

9116
)0(

918
)1(

914
)0(

912
)1(

911
)1

mod 131 (7.11)

This consists of square powers of 91 modulo 131, and we can calculate them by
starting with 911, then squaring it to get 912, then squaring it to get 914, then squar-
ing it to get 918, and so forth:

911 mod 131 = 91 mod 131,

912 mod 131 = 8281 mod 131 = 28 mod 131,

914 mod 131 = (922)2 mod 131 = 282 mod 131 = 784 mod 131 = 129 mod 131,

918 mod 131 = (924)2 mod 131 = 1292 mod 131 = 16641 mod 131 = 4 mod 131,

9116 mod 131 = (928)2 mod 131 = 42 mod 131 = 16 mod 131,

9132 mod 131 = (9216)2 mod 131 = 162 mod 131 = 256 mod 131 = 125 mod 131.

By repeatedly squaring, we were able to calculate these using relatively small num-
bers. Plugging these into Eq. (7.11), we get

9143 mod 131 = (125)1(16)0(4)1(129)0(28)1(91)1 mod 131
= 125 ·4 ·28 ·91 mod 131
= 1274000 mod 131
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= 25 mod 131.

In this case, multiplying 125 · 4 · 28 · 91 is small enough to be done on an ordinary
calculator, but if it were not, it could also be multiplied progressively, e.g.,

125 ·4 ·28 ·91 mod 131 = 125(4(28 ·91)) mod 131
= 125(4(2548)) mod 131
= 125(4(59)) mod 131
= 125(236) mod 131
= 125(105) mod 131
= 13125 mod 131
= 25 mod 131.

To go from the second line to the third, we used 2548 mod 131 = 59 mod 131. Thus,
9143 mod 131 = 25 mod 131, and we were able to calculate this using relatively
small numbers, as opposed to trying to calculate 9143 from the start.

Repeated squaring and other similar methods for calculating modular exponen-
tials have been implemented in computer algebra systems like Mathematica and
SageMath:

• In Mathematica, 9143 mod 131 can be computed using:

PowerMod[91,43,131]

The output is 25, as expected.
• In SageMath, 9143 mod 131 can be computed using:

sage: power_mod(91,43,131)
25

Alternatively, since SageMath is based on Python, we can use Python’s built-in
pow() function:

sage: pow(91,43,131)
25

For the computational complexity of the repeated squaring method, say we are
calculating ax mod N, where x is an n-bit binary number. Then, we start with a and
square it n− 1 times, modulo N. Once we have these, we may have to multiply
them together, which following the progressive approach above takes up to n− 1
multiplications, modulo N. Together, this is (n− 1) + (n− 1) = 2(n− 1) = O(n)
decimal arithmetic operations modulo N. We may be interested in the number of bit
operations, however, rather than decimal operations. Recall from elementary school
that you can multiply two d-digit numbers by multiplying O(d2) pairs of digits. For
example, to multiply 123 and 456,
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123
× 456

738
6150

+ 49200

56088

That is, we multiplied each digit of 123 by 6, then multiplied each digit of 123
by 5, and then multiplied each digit of 123 by 4, doing the carries along the way.
Altogether, we multiplied 9 pairs of numbers. Then, we added 9 digits together,
ignoring the zeros that we padded on the right. So, the total number of operations
on digits is 9+9 = d2 +d2 = 2d2 = O(d2). Similarly, to multiply two n-bit strings,
this method takes O(n2) multiplications of pairs of bits and additions. For example,
to multiply 101 and 110,

101
× 110

000
1010

+ 10100

11110

Converting to decimal, 101 = 5, 110 = 6, and 11110 = 30, so we get 5× 6 = 30,
as expected. Now, the repeated squares method takes O(n) multiplications/squares,
and we just saw that each of these takes O(n2) binary multiplications/additions,
and so the total number of elementary binary arithmetic operations for modular
exponentiation is O(n3), which is still a polynomial and is hence efficient.

Although calculating a single modular exponential using the previous repeated
squares method is fast, finding the period is slow because, when N is large, we
may need to calculate many individual modular exponentials before a pattern forms.
There is no known efficient algorithm for period finding.

Computer algebra systems often have functions for finding the period of modular
exponentials. Although they are slow for large N, they are fast for small values.

• In Mathematica, the MultiplicativeOrder function can be used to find the
period of ax mod N. For example, the order of 3x mod 10 is

MultiplicativeOrder[3, 10]

The output is 4, as expected.
• In SageMath, the multiplicative order() function within a modulus object

can be used to find the period of ax mod N. For example, the order of 3x mod 10
is
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sage: Mod(3,10).multiplicative_order()
4

Exercise 7.40. Use the repeated squares algorithm to calculate 9153 mod 131. Hint: Many of the
numbers were calculated for you in the text. Check your answer using a computer algebra system.

Exercise 7.41. Use the repeated squares algorithm to calculate 8738 mod 197. Check your answer
using a computer algebra system.

7.9.3 Quantum Solution

A quantum computer can efficiently find the period of ax mod N by utilizing a
quantum gate U that performs modular multiplication, which multiplies a number y
by a mod N, so it maps

U |y⟩= |ay mod N⟩.

Since we are working modulo N, y is a number between 0 and N− 1. If N can be
written using n bits, then |y⟩ would require n qubits. By repeatedly applying U to
|1⟩, we get a to some power:

U0|1⟩= |1 mod N⟩=
∣∣a0 mod N

〉
,

U1|1⟩= |a mod N⟩=
∣∣a1 mod N

〉
,

U2|1⟩=
∣∣a2 mod N

〉
,

U3|1⟩=
∣∣a3 mod N

〉
,

...

U r|1⟩= |ar mod N⟩=
∣∣a0 mod N

〉
.

This is exactly the modular exponential ax mod N because exponentiation is re-
peated multiplication. The last term is ar mod N = a0 mod N = 1 mod N because r
is the order of ax mod N, and the sequence repeats itself.

Now, consider a superposition of
∣∣a0 mod N

〉
,
∣∣a1 mod N

〉
, . . . ,

∣∣ar−1 mod N
〉

with respective coefficients e−2πis(0)/r, e−2πis(1)/r, . . . , e−2πis(r−1)/r, where s is an
integer taking values 0, 1, . . . , r−1:

|vs⟩=
1√
r

(
e−2πis(0)/r∣∣a0 mod N

〉
+ e−2πis(1)/r∣∣a1 mod N

〉
+ . . .

+ e−2πis(r−2)/r∣∣ar−2 mod N
〉
+ e−2πis(r−1)/r∣∣ar−1 mod N

〉)
=

1√
r

r−1

∑
k=0

e−2πisk/r
∣∣∣ak mod N

〉
.

Let us show that |vs⟩ is an eigenvector of U with eigenvalue e2πis/r:
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U |vs⟩=
1√
r

r−1

∑
k=0

e−2πisk/rU
∣∣∣ak mod N

〉
=

1√
r

(
e−2πis(0)/rU

∣∣a0 mod N
〉
+ e−2πis(1)/rU

∣∣a1 mod N
〉
+ . . .

+ e−2πis(r−2)/rU
∣∣ar−2 mod N

〉
+ e−2πis(r−1)/rU

∣∣ar−1 mod N
〉)

=
1√
r

(
e−2πis(0)/r∣∣a1 mod N

〉
+ e−2πis(1)/r∣∣a2 mod N

〉
+ . . .

+ e−2πis(r−2)/r∣∣ar−1 mod N
〉
+ e−2πis(r−1)/r |ar mod N⟩︸ ︷︷ ︸

|a0 mod N⟩

)

=
1√
r

(
e−2πis(r−1)/r∣∣a0 mod N

〉
+ e−2πis(0)/r∣∣a1 mod N

〉
+ e−2πis(1)/r∣∣a2 mod N

〉
+ · · ·+ e−2πis(r−2)/r∣∣ar−1 mod N

〉)
.

Multiplying by 1 = e0 = e2πis/r−2πis/r = e2πis/re−2πis/r, this becomes

U |vs⟩= e2πis/r 1√
r

(
e−2πis(r)/r∣∣a0 mod N

〉
+ e−2πis(1)/r∣∣a1 mod N

〉
+ e−2πis(2)/r∣∣a2 mod N

〉
+ · · ·+ e−2πis(r−1)/r∣∣ar−1 mod N

〉)
.

Note the first coefficient e−2πis(r)/r = e−2πis = 1 since s is an integer, and since
e−2πis(0)/r = 1, the is equation can be written as

U |vs⟩= e2πis/r 1√
r

(
e−2πis(0)/r∣∣a0 mod N

〉
+ e−2πis(1)/r∣∣a1 mod N

〉
+ e−2πis(2)/r∣∣a2 mod N

〉
+ · · ·+ e−2πis(r−1)/r∣∣ar−1 mod N

〉)
= e2πis/r|vs⟩.

Thus, |vs⟩ is an eigenvector of U with eigenvalue e2πis/r.
Since |vs⟩ is an eigenvector of U , we can use the phase estimation algorithm

from Section 7.8 to estimate its eigenvalue e2πis/r. That is, we can find s/r for some
s, which will allow us to find r, the period of the modular exponential, hence solving
the problem. To do this, however, we need to work out three more items:

1. How to construct the controlled-U gates for the phase estimation algorithm.
2. How to construct the eigenvector |vs⟩ for the phase estimation algorithm.
3. How to take the result of the phase estimation, which is an m-bit estimate for

s/r, and find r.

Let us address each of these now.
For the first item, we need controlled-U , controlled-U2, controlled-U4, through

controlled-U2m−1
. We choose to approximate the eigenvalue to m = O(n) bits. Writ-
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ing the control qubit as |z⟩ and the target qubits as |y⟩, the operation of CU2 j
is:

CU2 j |z⟩|y⟩= |z⟩
∣∣∣az2 j

y mod N
〉
.

This way, when z = 0, the target remains unchanged as y, and when z = 1, the target
is multiplied by a2 j

and taken mod N. From Section 7.9.2, repeated squaring is a fast
classical method for computing ax mod N that takes O(n2), and we can convert this
into a reversible circuit and hence a quantum gate. In Section 4.5.2, we discussed
methods for this by converting a classical adder into a quantum adder. The process
would be similar, but we would need to discuss how to square integers and take
the modulo using a classical computer first, so to avoid the lengthy discussion, the
details are beyond the scope of this textbook. Also, the best way to do this is also an
open research question.

For the second item, we need to prepare an eigenvector of U . A trick is, instead
of preparing a single eigenvector of U , we prepare the following equal superposition
of them:

1√
r

r−1

∑
s=0
|vs⟩.

In a moment, we will see that this superposition is easy to construct. First, the
broader picture is that we will use this superposition in the phase estimation al-
gorithm. Since the eigenvalue of |vs⟩ is e2πis/r, the phase estimation will yield an
m-bit approximation to s/r for one s = 0,1, . . . ,r− 1, where each value of s has a
probability of 1/r.

Now, let us show that the equal superposition is easy to construct. Plugging in
the definition of |vs⟩, the equal superposition becomes

1√
r

r−1

∑
s=0
|vs⟩=

1√
r

r−1

∑
s=0

1√
r

r−1

∑
k=0

e−2πisk/r
∣∣∣ak mod N

〉
=

1
r

r−1

∑
k=0

(
r−1

∑
s=0

e−2πisk/r

)
︸ ︷︷ ︸

r when k=0,
0 otherwise.

∣∣∣ak mod N
〉
.

Let us show why the term in parenthesis is r when k = 0 and why it is 0 when k ̸= 0.
First, when k = 0, the term in parenthesis is

r−1

∑
s=0

e−2πisk/r =
r−1

∑
s=0

e0 =
r−1

∑
s=0

1 = r.

Next, when k ̸= 0, let us define ω = e−2πik. Then, the term in parenthesis is

r−1

∑
s=0

e−2πisk/r =
r−1

∑
s=0

ω
s = 1+ω +ω

2 + · · ·+ω
r−1.
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This is a geometric series. We could look up the formula from Algebra II, but let us
quickly derive it. Let us call the series S:

S = 1+ω + · · ·+ω
r−1.

If we multiply S by ω , we get

ωS = ω +ω
2 + · · ·+ω

r.

Subtracting these series,

S−ωS =
(
1+ω + · · ·+ω

r−1)− (ω +ω
2 + · · ·+ω

r)
= 1−ω

r.

The left-hand side is (1−ω)S, so this becomes

(1−ω)S = 1−ω
r.

Dividing, we get a formula for the geometric series S:

S =
1−ωr

1−ω
.

Using this formula, let us plug in for ω:

S =
1− e−2πisk

1− e−2πisk/r =
1−1

1− e−2πisk/r = 0,

where in the numerator, we noted that e to any multiple of 2π is equivalent to e0 = 1.
Thus, we have proved that the term in parenthesis from several lines ago is 0 when
k ̸= 0. Thus, the equal superposition that we were considering is equal to

1√
r

r−1

∑
s=0
|vs⟩=

1
r

r
∣∣a0 mod N

〉
= |1 mod N⟩.

Thus, the equal superposition of the eigenstates |vs⟩ is precisely equal to |1 mod N⟩,
which is easily prepared by starting all the qubits as |00 . . .00⟩ and then applying
an X gate to the rightmost qubit to yield |00 . . .01⟩ = |1 mod N⟩. Then, from Sec-
tion 7.8.4, if we use the phase estimation algorithm, we get an approximation to the
phase of one |vs⟩, with s ∈ {0, . . . ,r−1}, with probability 1/r. That is, since |vs⟩ is
an eigenstate of U with eigenvalue e2πis/r, the phase estimation yields 0. j1 j2 . . . jm,
which is an m-bit approximation to j = s/r.

For example, let us implement this in Quirk to find the order of 3x mod 7. See
https://bit.ly/3otwt4n:

https://bit.ly/3otwt4n
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Quirk has a built-in modular multiplication gate under the “Modular” toolbox. It is
labeled ×A

mod R . To use this, we need to specify the values of A and R. We can do
this using a tool under the “Inputs” toolbox, and the tools look like A=#

default and R=#
default .

On the above circuit, they look like large gray squares with squared off corners.
Next, gates that multiply by modular powers of A can be created using the “Make
Gate” feature, i.e., ×A2 is two copies of ×A, and ×A4 is two copies of ×A2, etc.
The output of the quantum circuit can be hard to read, so we added a “Chance”
display that we resized across all five qubits of the eigenvalue register. By hovering
the mouse cursor over the Chance display, we can see the probability of various
outcomes for the eigenvalue register:

Here are the most likely outcomes for the eigenvalue register:
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Probability Binary Approx. of s/r Decimal Approx. of s/r

16.7963% |00000⟩ 0
11.4759% |00101⟩ 0.1562
11.4760% |01011⟩ 0.3438
16.7963% |10000⟩ 0.5
11.4759% |10101⟩ 0.6562
11.4760% |11011⟩ 0.8438

These are the likely values for our approximation of s/r. For example, we have an
11.4759% chance of measuring the eigenvalue register to be |00101⟩, so 0.00101
is a binary approximation of s/r. Converting this to decimal, we get that s/r is
approximately 0.1562.

Now for the third item, how do we take an approximation to s/r, like 0.1562 from
above, and find s and r? We use a method called continued fractions. A continued
fraction has the form

a0 +
1

a1 +
1

a2 +
1

. . . +
1
aℓ

for some non-negative integer ℓ. For example, from the table above, consider the
number 0.1562. To express this as a continued fraction, we begin by expressing
0.1562 as 1562/10000, which we express as a mixed number, i.e., a whole number
0 and fractional part 1562/10000:

0.1562 =
1562

10000
= 0+

1562
10000

.

Next, we invert the fractional part to get

0+
1

10000
1562

.

Then, we express 10000/1562 as a mixed number, resulting in

0+
1

6+
628

1562

.

Again, we invert the fractional part and then express it as a mixed number:
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0+
1

6+
1

1562
628

= 0+
1

6+
1

2+
306
628

.

Continuing this, we eventually arrive at

0.1562 = 0+
1

6+
1

2+
1

2+
1

19+
1
8

.

By listing all the whole numbers, plus the very last denominator, we can write the
continued fraction as [a0,a1, . . . ,a5] = [0,6,2,2,19,8].

A computer algebra system can quickly write a number as a continued fraction:

• In Mathematica, we can convert 0.1562 to a continued fraction using the
ContinuedFraction function:

ContinuedFraction[1562/10000]

The output of this is
{0,6,2,2,19,8}.

• Using SageMath, we can use the continued fraction function to convert
0.1562 into a continued fraction:

sage: continued_fraction(0.1562)
[0; 6, 2, 2, 19, 8]

The reason why we care about continued fractions is they allow us to find rational
approximations to numbers by truncating the continued fraction. These are called
convergents. For example, for 0.1562, the convergents are:

0th convergent = [0] = 0,

1st convergent = [0,6] = 0+
1
6
=

1
6
,

2nd convergent = [0,6,2] = 0+
1

6+
1
2

=
2

13
,

3rd convergent = [0,6,2,2] = 0+
1

6+
1

2+
1
2

=
5
32
,
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4rd convergent = [0,6,2,2,19] = 0+
1

6+
1

2+
1

2+
1

19

=
97

621
,

5th convergent = [0,6,2,2,19,8] = 0+
1

6+
1

2+
1

2+
1

19+
1
8

=
781
5000

.

In this example, the 5th convergent contains all the terms of the continued fraction,
and so the 5th convergent is exactly 0.1562 = 781/5000 = 1562/10000. We can
also calculate the convergents using a computer algebra system:

• In Mathematica, we can find a convergent using the FromContinuedFraction
function:

FromContinuedFraction[{0}]
FromContinuedFraction[{0, 6}]
FromContinuedFraction[{0, 6, 2}]
FromContinuedFraction[{0, 6, 2, 2}]
FromContinuedFraction[{0, 6, 2, 2, 19}]
FromContinuedFraction[{0, 6, 2, 2, 19, 8}]

This outputs the following numbers:

0,
1
6
,

2
13

,
5

32
,

97
621

,
781

5000
.

• Using SageMath, we can find a convergent using the value() function within
a continued fraction object:

sage: continued_fraction([0]).value()
0
sage: continued_fraction([0, 6]).value()
1/6
sage: continued_fraction([0, 6, 2]).value()
2/13
sage: continued_fraction([0, 6, 2, 2]).value()
5/32
sage: continued_fraction([0, 6, 2, 2, 19]).value()
97/621
sage: continued_fraction([0, 6, 2, 2, 19, 8]).value()
781/5000

The higher the convergent, the better the approximation to 0.1562.
For our period finding problem, 0.1562 is a guess for s/r, where r is the period

of the modular exponential ax mod N, and s is an integer between 0 and r−1. Note
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r must be less than N. Then, looking at the convergents, the best approximation to
s/r such that r < N = 7 is 1/6. Thus, using the convergents of continued fractions,
we were able to guess that s = 1 and r = 6. To check whether our guess is correct,
we can calculate 3r mod 7 and see if we get 1 mod 7:

36 mod 7 = 1 mod 7.

Thus, with this measurement result, we successfully found the period r = 6. Note it
is known that the continued fraction algorithm yields a guess for s and r in O(n3)
steps, if s and r are n-bit numbers.

From the previous table of significant measurement outcomes of the Quirk circuit
for phase estimation, some other likely estimates for s/r are 0, 0.3438, 0.5, 0.6562,
and 0.8438. For 0, we get s = 0 and no guess for r, so if we get this value, we need
to run the quantum circuit again in hopes for a better outcome. For the other values,
we can use the continued fraction algorithm and get the following guesses for s and
r:

Probability Binary Approx. of s/r Decimal Approx. of s/r Guess of s/r 3r mod 7

16.7963% |00000⟩ 0 N/A N/A
11.4759% |00101⟩ 0.1562 1/6 1
11.4760% |01011⟩ 0.3438 1/3 6
16.7963% |10000⟩ 0.5 1/2 2
11.4759% |10101⟩ 0.6562 2/3 6
11.4760% |11011⟩ 0.8438 5/6 1

For example, for 0.3438, the continued fraction algorithm yields s = 1 and r = 3.
Checking if this guess for the period is correct, we calculate 3r mod 7 = 33 mod 7 =
6 mod 7 ̸= 1 mod 7, so 3 is not the period. Then, we run the quantum circuit again,
hoping to get a better guess for r. The guess for s and r, and the value of 3r mod 7
for each guess for r, is shown in the above table (see Exercise 7.42). The number
of times we may have to repeat the quantum circuit is small enough that it does not
affect the overall runtime of the algorithm, although a proof of this fact is beyond
the scope of this textbook (see Nielsen and Chuang for it).

Speaking of the overall runtime, let us find the circuit complexity assuming m =
O(n). The quantum algorithm takes one X gate to prepare the eigenvector register
in the state |00 . . .01⟩, m Hadamard gates, and m controlled-Upower gates, and an
IQFT on m qubits. Each of the m controlled-Upower gates takes O(n2) gates for a
total of O(mn2) = O(n3) gates. The IQFT takes O(m2) = O(n2) gates. Finally, the
continued fraction algorithm takes O(n3) gates. Thus, the circuit complexity of the
quantum period algorithm is O(n3), which is a polynomial in n, so it is efficient.

Exercise 7.42. In the text, we considered the example of 2x mod 7, and we found several approxi-
mations to s/r. For each of the approximations 0.3438, 0.5, 0.6562, and 0.8438, do the following:

(a) Express the decimal as a continued fraction.
(b) Find the convergents of the continued fraction.
(c) What is the fractional guess for s/r, and hence, what are the guesses s and r?
(d) Calculate 2r mod 7.
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(e) Is this guess for r the period or not?

Exercise 7.43. Modify the Quirk circuit from the text to find the period of 2x mod 7. List the most
likely outcomes for the 5-bit approximation of s/r, and in each case, find what r would be and
calculate 2r mod 7 to see if it is the correct period. What is the period?

Exercise 7.44. Use Quirk to simulate the quantum circuit to find the period of 2x mod 15. Since
N = 15, you will need n = 4 qubits for the eigenvector register. You can use Quirk’s built-in modu-
lar multiplication gate and use it to make gates with higher powers. For the eigenvalue register, use
m = 8 qubits. List the most likely outcomes for the m-bit approximation of s/r, and in each case,
find what r would be and calculate 2r mod 15 to see if it is the correct period. What is the period?

7.10 Factoring

7.10.1 The Problem

Say we are given a number N that is the product of two prime numbers p and q. The
goal is to factor N, i.e., to find its factors p and q. In Section 6.6.2, we learned that
the believed difficulty of this factoring problem for classical computers is the basis
of RSA cryptography.

7.10.2 Classical Solution

The best known classical algorithm for factoring is the number field sieve. How it
works is beyond the scope of this textbook, but to factor an n-bit number, its run-
time is roughly en1/3

, which is subexponential. It grows faster than polynomial, so
factoring is inefficient for classical computers, but it is also not exponential because
of the natural logarithms.

7.10.3 Quantum Solution: Shor’s Algorithm

An efficient quantum algorithm for factoring was invented by Peter Shor in 1994.
(This is the same Peter Shor who invented the Shor code from Section 4.7.4 in
1995.) This means quantum computers, if they can be built at scale, can break RSA
cryptography from Section 6.6.2. Historically, this greatly increased the amount of
money for research in quantum computing and is one of the reasons why quantum
computing has developed into the field it is today. The subexponential speedup over
the best known classical algorithm is evidence against the Strong Church-Turing
Thesis from Section 1.8.3, meaning a probabilistic Turing machine may not be able
to efficiently compute everything that is efficiently computable.

To factor N = pq, Shor’s algorithm consists of the following three steps:
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1. Pick any number 1 < a < N. Calculate the gcd(a,N) to determine if we were
extraordinarily lucky and picked a multiple of p or q. If the gcd is not 1, then
the gcd is a nontrivial common factor of a and N, and so we have found one of
the factors of N. Let us call it p = gcd(a,N). Then, q = N/p, and we are done
factoring. If gcd(a,N) = 1, we continue to the next step.

2. Find the period r of ax mod N. Note this is believed to be hard for classical
computers, but it is efficient for quantum computers using the period finding
algorithm from the previous section. Make sure the period r is even; if it is odd,
go back to step 1 and pick a different a. Also, calculate ar/2 mod N and make
sure it does not equal N− 1; if it equals N− 1, go back to step 1 and pick a
different a. It is known that there is at least a 50% chance of picking a “good”
a that meets both criteria, so we will not have to try too many times. The proof
of this is beyond the scope of this textbook, but Theorem 5.3 of Nielsen and
Chuang has more details.

3. Since we calculated the period r in the previous step, we know that ar =
1 mod N. Subtracting 1 from both sides, this means

ar−1 = 0 mod N.

This says ar−1 divided by N has a remainder of 0, so ar−1 is a multiple of N.
Let us call the multiple k, so

ar−1 = kN.

Also substituting N = pq, we get

ar−1 = kpq.

Now, factoring the left-hand side, we get

(ar/2−1)(ar/2 +1) = kpq.

From Step 2, we know that r is even. So, ar/2 is an integer, and ar/2±1 are also
integers. Now, for the product of ar/2−1 and ar/2 +1 to equal kpq, at least one
of the terms ar/2−1 or ar/2 +1 must contain p and/or q as a factor. That is, for
some integers c and d such that cd = k, we have three possibilities for ar/2−1
and ar/2 +1:

1. (ar/2−1)︸ ︷︷ ︸
c

(ar/2 +1)︸ ︷︷ ︸
d pq

= kpq,

2. (ar/2−1)︸ ︷︷ ︸
cp

(ar/2 +1)︸ ︷︷ ︸
dq

= kpq,

3. (ar/2−1)︸ ︷︷ ︸
cpq

(ar/2 +1)︸ ︷︷ ︸
d

= kpq.
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Let us show that the first and third cases are impossible by showing that ar/2−
1 and ar/2 + 1 are not multiples of N. That is, we want to show that (ar/2−
1) mod N ̸= 0 mod N and (ar/2 + 1) mod N ̸= 0 mod N, so neither has N as a
factor.
Let us start with (ar/2− 1) mod N = 0 mod N and show that this equation is
not true. If we add 1 to both sides, we get ar/2 = 1 mod N. We know that r
is the period of ax mod N, however, which means r is the smallest value of x
such that ax = 1 mod N. Thus, it cannot be that ar/2 = 1 mod N, otherwise r/2
would be a smaller value of x such that ax = 1 mod N. Therefore, the equation
(ar/2−1) mod N = 0 mod N is incorrect, and it must be that (ar/2−1) mod N ̸=
0 mod N, so (ar/2−1) does not have N as one of its factors.
Next, let us show that (ar/2 +1) mod N = 0 mod N is not true. If we subtract 1
from both sides, we get ar/2 mod N =−1 mod N. Recall that the modulus works
in a “cyclical” fashion. For example, with a 12-hour clock, 15 o’clock corre-
sponds to 3 o’clock. Similarly,−1 o’clock corresponds to 11 o’clock. Thus, our
modular equation becomes ar/2 mod N = N−1 mod N. This is not true, how-
ever, because in Step 2, we made sure that ar/2 mod N ̸= N− 1 mod N. Thus,
ar/2 +1 also does not have N as one of its factors.
Thus, only the second case is possible:

(ar/2−1)︸ ︷︷ ︸
cp

(ar/2 +1)︸ ︷︷ ︸
dq

= kpq.

This means ar/2−1 and ar/2+1 each share a nontrivial factor with N = pq, and
we can obtain them using the greatest common divisor:

p = gcd(ar/2−1,N),

q = gcd(ar/2 +1,N).

Thus, we have factored N.

As an example, say we want to factor N = 15. We begin Shor’s algorithm by
picking a value for a that is greater than 1 but less than N = 15:

1. Say we pick a = 6. We calculate gcd(a,N) = gcd(6,15) = 3. This means that
3 is a factor of both a and N. Thus, we have found one of the factors of N. Let
us call it p = 3. The other factor is q = N/p = 15/3 = 5. So, we have factored
N = 15 into pq = 3 ·5, and we are done.

Let us work out what might happen if we did not have such a lucky pick for a.

1. Say we pick a = 2. We calculate gcd(a,N) = gcd(2,15) = 1, so we continue to
Step 2.

2. We find the period of ax mod N = 2x mod 15. This was Exercise 7.44, and we
used the quantum period finding algorithm to determine r = 4. This period is
even, and we confirm that ar/2 +1 = 5 mod 15 ̸= 14 mod 15.

3. Calculate the factors:
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p = gcd(ar/2−1,N) = gcd(22−1,15) = gcd(3,15) = 3,

q = gcd(ar/2 +1,N) = gcd(22 +1,15) = gcd(5,15) = 5.

Thus, the factors of N = 15 are p = 3 and q = 5.

The bottleneck for Shor’s algorithm is Step 2, finding the period of the mod-
ular exponential. It is efficient on a quantum computer, but there is no known
polynomial-time algorithm for a classical computer.

Although quantum computers would break RSA cryptography, their creation
does not necessarily mean the end of digital privacy. Already, efforts are under-
way to choose a new public-key cryptography standard that is resistant to quantum
computers. Post-quantum cryptography refers to such classical cryptographic algo-
rithms that are resistant to attacks from future quantum computers. Besides this,
there is also quantum key distribution protocols, such as BB84 that was covered
in Section 6.6.3, that are secure from quantum computers. They require a quantum
network, however, to be used.

Exercise 7.45. Use Shor’s algorithm to factor N = 35.
(a) Pick a value of a such that gcd(a,N) = 1 so that we can continue with the remaining steps of

the algorithm.
(b) What is the period of ax mod N? For the sake of this problem, just find the period classically

since the numbers are small. Make sure the period r is even and ar/2 ̸= N−1 mod N. If not,
go back and pick a different value for a.

(c) Calculate the factors p = gcd(ar/2−1,N) and q = gcd(ar/2 +1,N).

Exercise 7.46. Use Shor’s algorithm to factor N = 209. Say we pick a = 22.
(a) Show that gcd(a,N) ̸= 1.
(b) What are the factors of N?

7.11 Summary

For many algorithms in classical and quantum computing, it is easier to find the
query complexity of the algorithms, which is the number of calls to a function.
Quantum computers can provide provable exponential speedups in query complex-
ity, and we saw an example for the problem of finding a secret XOR mask. Quantum
computers also provide a quadratic speedup for the general problem of brute-force
searching. The most accurate way to quantify the complexity of an algorithm, how-
ever, is counting the number of elementary gates, but this circuit complexity can
differ depending on what gates are permitted, and even then it is difficult to know
if a circuit can be simplified further. Despite this, quantum computers are known to
provide speedups in circuit complexity for several problems, such as discrete Fourier
transforms, estimating the phases of eigenvalues of unitary matrices, finding the pe-
riod of modular exponents, and factoring. Factoring, in particular, is very relevant
to the real-world, as it underpins RSA cryptography, and the quantum speedup is
subexponential over the best known classical algorithms.



Chapter 8
Next Steps

Congratulations on finishing Introduction to Classical and Quantum Computing!
As you have seen, although this an introductory textbook with only minimal pre-
requisites, the material did not stay at an elementary or conceptual level. Instead,
we learned the mathematics needed to understand quantum computing more deeply.
You have learned a lot, and I am proud of you.

In this short chapter, we will explore some possible careers in quantum comput-
ing. They range from technical jobs where the ideas you learned in this textbook
will be used regularly, to supporting roles where a general familiarity with quantum
computing is helpful, but not required. For those who want to continue learning the
technical details, we discuss possible next steps.

8.1 Careers in Quantum Computing

Quantum computing, long confined to the halls of academic research, is now an
emerging industry. As such, there are many companies involved in quantum com-
puting, and they could be grouped into various types:

1. Traditional technology companies. Many well-established computer companies
have noted that quantum computing may be the future of computer technology,
and they want to be leaders in the field. As such, they are investing heavily in
building quantum hardware and/or developing quantum software expertise.

2. Technology startup companies. Since quantum computing is a relatively new
technological field, there is still plenty of room for new companies with new
ideas. As a result, startups have also entered the nascent quantum computing
industry. Some specialize in hardware, others specialize in software, while oth-
ers are attempting both.

3. Companies that use computing technology. Banks, car companies, airplane
manufacturers, and accounting firms are all examples of companies that have
been hiring experts in quantum computing. They are not interested in build-
ing quantum computers themselves, but they want to know how future quantum
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computers can be used for each of their businesses. If they wait for fault-tolerant
quantum computers to be built before investigating their uses, they will be left
behind by competitors.

These companies are desperately trying to hire qualified individuals. Some of the
jobs are quantumly technical, such as building quantum computers and developing
quantum algorithms. Other jobs are classically technical. For example, web pro-
grammers and software engineers were needed to create the IBM Quantum Expe-
rience website, and these jobs require little or no prior experience with quantum
computing. As another example, electrical engineers with experience with radio-
frequency devices can easily pivot to helping to build superconducting qubits, where
radio frequency interactions are very important. Still, other jobs are non-technical.
Companies need accountants, marketers, experts in human resources, business ad-
ministrators, and more who may not need any knowledge of quantum computing at
all, although a general understanding may be useful. All this is to say that if you
want a job related to quantum computing but do not have the quantum skills, yet,
there are job opportunities that utilize non-quantum skills.

More universities are also hiring professors in quantum computing, recognizing
the growth of the field. In 2017, the Division of Quantum Information was formed
in the American Physical Society, placing it alongside well-established areas of
physics like astrophysics, condensed matter physics, and particles and fields.

While many students are aware of industrial and academic jobs, often, students
have little exposure to government careers. To ignore government jobs, however,
is to ignore a large sector of the quantum computing ecosystem. For example, the
U.S. Department of Defense is the largest employer of scientists and engineers in
the United States, and many of these are civilian jobs in research laboratories. In-
creasingly, government laboratories are hiring people to investigate how quantum
computers affect the missions of their organizations. Besides technical roles, experts
in quantum computing are also needed for program management, policy, and advis-
ing roles to help the government prioritize quantum computing research and work-
force development. Government jobs typically come with good non-salary benefits,
including retirement pensions and work-life balance. There are also many jobs at
national laboratories. Although national laboratories are funded by the government,
they are managed by contractors, so employees at national laboratories are typically
employees of the contractors and are not government employees. But, many of their
jobs are similar in that they can be mission-focused.

If you want a quantumly technical job, you will likely want to study quantum
computing, mathematics, and physics beyond this introductory textbook, and some
suggestions for possible next steps are next.

8.2 Technical Next Steps

As stated in the preface and throughout this textbook, Nielsen and Chuang’s text-
book, Quantum Computation and Quantum Information is the standard advanced
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textbook and will dive deeply into many of the results that were out of the scope of
this introductory textbook, such as proving the Solovay-Kitaev theorem about uni-
versal sets of quantum gates, and calculating the probability that the quantum phase
estimation algorithm will yield the wrong answer. There are plenty of resources
on the internet as well, including lecture notes from professors, video lectures, and
tutorials.

A major concept that one should learn is the mixed state. In this entire textbook,
the state of a qubit was |0⟩, |1⟩, or some superposition of |0⟩ and |1⟩. For all of these,
the state can be known with certainty, even though the measurement outcome may
be probabilistic. These states were visualized as points on the Bloch sphere, and they
are called pure states. In contrast, if we are not sure if a qubit is in one pure state
or another pure state, then the state itself and not just its outcome is probabilistic.
These are called mixed states, and they can be visualized as a point inside the Bloch
sphere, so in this context, it is actually a Bloch ball, which also contains the inside
and not just the surface. While a pure state was written using vectors (with “kets”
being column vectors and “bras” being row vectors), a mixed state is written using
a matrix called a density matrix. Some of the topics that we covered in this textbook
should actually be done in terms of mixed states, namely quantum error correction,
the no-signaling principle, and aspects of entanglement. Again, Nielsen and Chuang
go into detail about all this.

If you are a student, you may wonder what courses or majors to consider. Physics,
computer science, mathematics, and engineering are all fine. If you are interested in
quantum hardware, experimental physics or electrical engineering are good choices.
If you are interested in the theoretical side of quantum computing and quantum al-
gorithms, then theoretical physics, computer science, and mathematics are good
choices. Personally, I work on quantum algorithms. My PhD was in theoretical
physics, but my PhD advisor was a mathematician. Then, I did two postdoctoral
research fellowships in computer science before landing a tenure-track job as a
physics professor. So, my own story is a good illustration of the interplay between
physics, mathematics, and computer science.

For students, a great way to learn quantum computing is to do research with a
professor. Look around at your university to see if any professors work on quantum
computing, and do not be afraid to look outside of your department. Remember my
story, that I was a physics student who was advised by a math professor. If there
are no professors at your university who work on quantum computing, see if any
professors are interested in learning about quantum computing, and if you can do an
independent study with them, where you read Nielsen and Chuang or some other ed-
ucational resource and teach the professor what you have been learning. This way, if
you apply for graduate school, there is a professor who can write you a letter of rec-
ommendation and explain that you have been self-learning quantum computing and
even teaching them. Another way to gain research experience is to apply for sum-
mer internships and research fellowships. Many quantum computing companies, as
well as government and national labs, host students for summer research. There is
also the Research Experiences for Undergraduates (REU) program, and some of the
universities may have quantum computing research projects for students.
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Some people make broad statements like, “You don’t need to know so and so to
do quantum computing.” For example, a common critique among some computer
scientists is that you do not need to know Schrödinger’s equation, the fundamental
physics equation of quantum mechanics, to do quantum computing. In some sense,
that is true, as this is literally the first time I have mentioned Schrödinger’s equation
in this textbook. But, that is because this textbook builds up to quantum circuits
and algorithms. There are many other aspects of quantum computing where know-
ing Schrödinger’s equation is necessary, such as for physical quantum hardware,
for analog quantum algorithms like continuous-time quantum walks, and for many
optimization algorithms like those based on quantum annealing or the quantum ap-
proximate optimization algorithm (QAOA). You may want to learn Schrödinger’s
equation yourself, depending on what aspects of quantum computing you wish to
pursue. If you major in physics, you will certainly come across it in a Modern
Physics course and in a Quantum Mechanics course. I bring this up to say there
is no one right path to be come a quantum information scientist. If you want to take
a traditional physics approach through Schrödinger’s equation, that is fine. If you
want to take an alternative approach, that is also fine. Just because your path does
not look like someone else’s does not mean it is the wrong path for you.

8.3 Questions

I regret that I do not have the capacity to respond to individual questions, nor do I
have the expertise to answer most questions beyond my specific research area. So,
if you have any questions, I suggest submitting them to the Quantum Computing
Stack Exchange at

https://quantumcomputing.stackexchange.com

Many members of our community volunteer their expertise on the website to help
others, including those who are newer to the field.

8.4 Parting Words

As we end our journey together, I again want to celebrate your completion of this
textbook. You did it! I hope you will consider quantum computing as a potential
career. If you do become a quantum information scientist, please let me know. I
would be delighted to hear that I played a role in your journey. Also, I wrote this
textbook for my students, that it might help them in their learning. By completing
this textbook, you have, in some way, also become one of my students, and so this
textbook is also dedicated to you.

https://quantumcomputing.stackexchange.com


Answers to Exercises

Exercises of Chapter 1

1.1 (a) 24 = 16. (b) 25 = 32.

1.2 (a) 64 = 1296. (b) 65 = 7776.

1.3 1.

1.4 (a) 5 coins. (b) 2 dice.

1.5 (a) 23. (b) 202.

1.6 (a) 101010. (b) 111101111.

1.7 (a) 15228. (b) 11111111. (c) FA = 250, 10 = 16, E4 = 228.

1.8

Binary Decimal
(Two’s Complement) (Base 10)

000 0
001 1
010 2
011 3
100 -4
101 -3
110 -2
111 -1

1.9 Answer varies. See Table 1.1.

1.10 Quantum.
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1.11 (a)
A B Output
0 0 1
0 1 1
1 0 1
1 1 0

.

(b) NAND.

1.12 (a)
A B Output
0 0 1
0 1 0
1 0 0
1 1 0

.

(b) NOR.

1.13 (a) On. (b). On. (c). On. (d) Off. (e) NAND.

1.14 (a) Off. (b). On. (c) On. (d) On. (e) OR.

1.15 (a) On. (b). Off. (c) Off. (d) Off. (e) NOR.

1.16 (a) Off. (b). On. (c) Off. (d) XOR.

1.17 (a) Answer varies. One example is the Intel 8086, introduced in 1978, which
had 29,000 transistors.
(b) Answer varies. One example is the Apple M1, introduced in 2020, which had
16,000,000,000 transistors.

1.18 (a)
A B Output
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

.

(b) 0. (c) 1.

1.19
A B C Output
0 0 0 1
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

.
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1.20 (a) 221
= 22 = 4. (b) 222

= 24 = 16. (c) 223
= 28 = 256. (d) 224

= 216 = 65536.
(e) 22n

.

1.21 Answer varies. One answer is:

A

B

AB

AB

AB +AB

1.22 Answer varies. One answer is ABC+ABC+ABC+ABC:

A
A

B
B

C
C

ABC

ABC

ABC

ABC
.

1.23 Answer varies. One answer is ABC+ABC = ABCABC:
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A
A

B
B

C
C

ABC

ABC

1.24 In the text, the OR gate was implemented using three NOT gates and one AND
gate. Each NOT gate can be implemented using a single NAND gate, and the AND
gate can be implemented by one NAND gate and one NOT gate. The last two NOT
gates cancel out, however, yielding the following:

A

B

A+B

.

1.25 Start with {NOT,AND,OR}:

A

B

AB +AB

Then replace the gates with NANDs:
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A

B

AB +AB

1.26

A

B
AB

C
ABC

1.27
A B A B A+B A+B
0 0 1 1 1 0
0 1 1 0 1 0
1 0 0 1 1 0
1 1 0 0 0 1

1.28 (a)
A Output
0 1
1 0

(b)
A B Output
0 0 0
0 1 1
1 0 1
1 1 1

1.29 The outputs are all 1. Makes sense because B+B = 1, and A+1 = 1.

1.30 Changing the OR to an XOR does not change the logic, so the truth table stays
the same.

1.31 10000 or 16.

1.32 11100110.

1.33 10100 or 20.

1.34 A+B.

1.35 A+B+C.

1.36 ABC+ABC+ABC = B(A+C).

1.37 (a) ABC+ABC+ABC+ABC. (b) AB+AC.

1.38 (a) Irreversible. (b) Irreversible. (c) Irreversible. (d) Irreversible.
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1.39 (a) Irreversible. (b) Reversible.

1.40 (a)
A B C A′ B′ C′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

.

(b) Reversible since the outputs are unique.

1.41 (a)
A B C A B AB⊕C
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 0
1 1 1 1 1 1

.

(b) De Morgan’s Law. (c) NOR. (d) OR. (e) Start with
a Toffoli gate and add a NOT gate before the first two
inputs and after the first two outputs.

1.42 (a) Reversible. (b) Irreversible. A reversible version is:

A A

Gate f(A)

B
f(A)⊕B

1.43 The truth table is

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

.

It is irreversible. A reversible version is:
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A A

B B

A⊕B

C
C ⊕A⊕B

A B C A B A⊕B⊕C
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 1 0
1 1 1 1 1 1

1.44 (a) The truth table is
A B A⊕B B
0 0 0 0
0 1 1 1
1 0 1 0
1 1 0 1

.

It is reversible.

(b) The truth table is
A B A⊕B AB
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

.

It is irreversible. A reversible version is
A A

B B

Gate
A⊕B

C
A⊕B ⊕ C

AB

D
AB ⊕D

1.45
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Cin Cin

A A

B B

FA

S

Cout

D
S ⊕D

E
Cout ⊕ E

1.46 (a) 213 = 8192. (b) spontaneously flip, Radioactive atoms, presence, absense,
single event upset. (c) miniaturized. (d) increased, greater, sky (e) cosmic rays, parti-
cles, black holes. (f) cascade, transistor. (g) error correction code. (h) month, cosmic
rays. (i) 10 to 30. (j) 161. (k) flash, every star.

1.47 (a) Even. (b) No. (c) Yes. The parity of the first seven bits doesn’t match the
parity bit. (d) No. If two bits flipped, the parity would be unchanged.

1.48 (a) Yes, the middle bit has flipped. (b) Yes, the left bit has flipped. (c) 0.1040.
Decrease, since 0.1040 < 0.2. (d) 0.7840. Increase, since 0.78404 > 0.7.

1.49 (a) Yes, b1 was flipped. (b) Yes, b2 and b1 were flipped. (c) 10p3(1− p)2 +
5p4(1− p)+ p5. (d) p < 1/2. (e) 0.00856, decreases. (f) For 3-bit code, the proba-
bility of an uncorrectable error is 0.028, which is more likely than the 5-bit code’s
0.00856.

1.50 (a) f (100). (b) g(500). (c) They are equal when n = 477, after which g(n) is
greater than f (n). (d) true, true, false, false, false.

1.51 Possibilities are (a) iii or v, (b) i or v, (c) ii or v, (d) v, (e) i or iv. Thus, the only
correct answer is (a) iii, (b) i, (c) ii, (d) v, (e) iv.

1.52 (a) Efficient. (b) Efficient. (c) Efficient. (d) Inefficient. (e) Inefficient. (f) Inef-
ficient.

1.53 (a) Bounded-Error Probabilistic Polynomial-Time. (b) “As the class of feasible
problems for a computer with access to a genuine random-number source.”

1.54 Many possible answers, including factoring, graph isomorphism, n× n Su-
doku, traveling salesman, Hamiltonian path, and bin packing.

1.55 (a) Yang–Mills and Mass Gap, Riemann Hypothesis, P vs NP Problem,
Navier–Stokes Equation, Hodge Conjecture, Poincaré Conjecture, and Birch and
Swinnerton-Dyer Conjecture. Only the Poincaré Conjecture is solved. (b) Stephen
Cook and Leonid Levin in 1971.

1.56 Answers vary.



Answers to Exercises 357

1.57 Answers vary.

1.58 (a) ▷ 0 0 1. (b) ▷ 0 1 1. (c) ▷ 1 0 1. (d) ▷ 1 1 0. (e) NAND. (f) Calculates the
NAND of all the bits.

1.59 Answers may vary. Here is one:

Current State Current Tape Write to Tape Move Update State

qs ▷ ▷ → q1
q1 0 0 → q1
q1 1 1 → q2
q2 0 0 → q2
q2 1 1 → q1
q1 0 • qh
q2 1 • qh

1.60 (a) Run forever. (b) Halt. (c) By returning true, H is saying that Z halts. But
then Z responds to this by running forever. Z can’t both halt and run forever. That’s
a contradiction. (d) By returning false, H is saying that Z runs forever. But then Z
responds to this by halting. Z can’t both run forever and halt. That’s a contradiction.

1.61 (a) complete, consistent, decidable. (b) programs, themselves. (c) Can every
even number greater than 2 be written as the sum of two primes? (d) Runs forever.
(e) Halts. (f) Runs forever. Yes, it’s a contradiction. (g) Runs forever. Yes, it’s a
contradiction. (h) undecidable, can’t solve.

1.62 Answers vary.

1.63 (a) a million times. (b) all known, quantum supremacy.

1.64 (a) Simulating quantum physics. (b) Hardest. (c) Some.

Exercises of Chapter 2

2.1 (a) 1. (b) 1. (c) 0. (d) +. (e) 0. (f) −i. (g) 0. (h) 0.

2.2 (a) −i. (b) i. (c) −i. (d) −i. (e) −. (f) 0. (g) i. (h) 0 or 1 depending on die roll.

2.3 (a) The north pole. (b) The south pole. (c) The equator. (d) The northern hemi-
sphere. (e) The southern hemisphere.

2.4 (a) 1. (b) 2. (c)
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Re

Im

(d)
√

5ei tan−1(2) =
√

5ei(1.107) =
√

5ei63.4◦ . (e) 1−2i or
√

5e−i(1.107). (f)
√

5. (g) 5.

2.5 (a) −3. (b) −1. (c)

Re

Im

(d)
√

10ei(tan−1(1/3)+π) =
√

10ei(0.32+π) =
√

10ei3.46 or
√

10ei(18.4◦+180◦) =√
10ei198.4◦ . (e) −3+ i or

√
10e−i3.46. (f)

√
10. (g) 10.

2.6 (a) 4/9. (b) 5/9.

2.7 (a) 1. (b) 0.

2.8 2/
√

5eiθ for any real θ .

2.9 (a) A = eiθ/
√

13 for any real θ . (b) 4/13. (c) 9/13.

2.10 (a) |0⟩ with probability 1/4 or |1⟩ with probability 3/4. (b)
1−
√

3
2
√

2
|+⟩+

1+
√

3
2
√

2
|−⟩. (c) |+⟩ with probability (2−

√
3)/4 ≈ 0.07 or |−⟩ with probability

(2+
√

3)/4≈ 0.93.

2.11 (a)

√
3(1+ i)

4
|a⟩− 3+ i

4
|b⟩. (b) |a⟩with probability 3/8 or |b⟩with probability

5/8.

2.12 (a) 1/2. (b) 1/2.
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2.13 (a) No, they differ by a global phase, which is irrelevant. They are the same
quantum state. (b) Yes. Measuring in the X-basis distinguishes them. (c) No, they
differ by a global phase, which is irrelevant. They are the same quantum state.

2.14 (a) (θ ,φ) = (90◦,90◦) = (π/2,π/2). (b)

x

y

z

1√
2
(|0〉+ i|1〉)

2.15 (a) (θ ,φ) = (120◦,45◦) = (2π/3,π/4). (b)

x

y

z

2.16 (θa,φa) = (π/3,π/2) and (θb,φb) = (2π/3,3π/2), so θb = π−θa and φb =
φa +π .

2.17 (a) (x,y,z) = (0,1,0). (b) (x,y,z) = (
√

3/2
√

2,
√

3/2
√

2,−1/2).

2.18 (a) polarization, decoherence. (b) electric fields. (c) laser beams. (d) molecule,
radio-frequency, one-qubit. (e) discrete energy levels, atomic nucleus. (f) Quantum
information, hyperfine. (g) spin, microwave, optical. (h) charge, flux, phase.

2.19 Answers vary.

2.20 Answers vary.

2.21 Answers vary. One is the Josephson junction is used to create a superconduct-
ing flux qubit, which uses currect as its qubit. Clockwise current corresponds to |0⟩,
and counterclockwise current corresponds to |1⟩.

2.22 (a) (α + β )|0⟩+(α − β )|1⟩. (b) No, the total probability is 2, which is not
possible.
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2.23 (a)
(√

3
2 α +

√
3+i
4 β

)
|0⟩+

(√
3+i
4 α + −

√
3−3i
4 β

)
|1⟩. (b) Yes, the total proba-

bility is 1.

2.24 (a) Yes, reversible. (b) No, not reversible.

2.25 (a) Yes, reversible. (b) No, not reversible.

2.26 ZX(α|0⟩+β |1⟩) = Z(β |0⟩+α|1⟩) = β |0⟩−α|1⟩

2.27 (a) XZXZ|0⟩ = −|0⟩, XZXZ|1⟩ = −|1⟩. (b) ZXZX |0⟩ = −|0⟩, ZXZX |1⟩ =
−|1⟩.

2.28 (a) α|0⟩+βeiθ |1⟩. (b) |α|2 + |βeiθ |2 = |α|2 + |β |2 = 1.

2.29 (a) α+β√
2
|0⟩+ α−β√

2
|1⟩. (b)

∣∣∣α+β√
2

∣∣∣2 + ∣∣∣α−β√
2

∣∣∣2 = |α|2 + |β |2 = 1.

2.30 Answers vary.

2.31 Y H|0⟩= Y |+⟩=−i|−⟩.

2.32 HXH|0⟩= Z|0⟩= |0⟩ and HXH|1⟩= Z|1⟩=−|1⟩.

2.33 (a) 1
2
√

2

[
(1− i+2eiπ/4)|0⟩+(1+ i)|1⟩

]
or

1
2
√

2

[(
1+
√

2− (1−
√

2)i
)
|0⟩+(1+ i)|1⟩

]
. (b) 3/4 and 1/4.

2.34 (a) (0,0,1). (b) eiγ
[
cos
(

π

8

)
I− isin

(
π

8

)
Z
]
. (c) eiγ e−iπ/8|0⟩. (d) eiγ eiπ/8|1⟩. (e)

If γ = π/8, get U |0⟩= |0⟩ and U |1⟩= eiπ/4|1⟩, which is the T gate.

2.35 (a)

x

y

z
(b)

x

y

z

(c) (1/
√

3,1/
√

3,1/
√

3). (d)−ieiγ 1√
3
(X +Y +Z). (e)−ieiγ 1√

3
[|0⟩+(1+ i)|1⟩]. (f)

−ieiγ 1√
3
[(1− i)|0⟩− |1⟩].

2.36 (a,b)

(c) 85.4% probability of getting |0⟩, and 14.6% probability of getting |1⟩.
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Exercises of Chapter 3

3.1

(
1
2
−
√

3
2

)
.

3.2 |0⟩ with probability 3/4 and |1⟩ with probability 1/4.

3.3 (a)
√

3
2 ⟨0|+

1
2 ⟨1|. (b)

(√
3

2
1
2

)
. (c) 2

3 ⟨0|+
1+2i

3 ⟨1|. (d)
( 2

3
1+2i

3

)
.

3.4 (a) (3+2
√

15− i
√

3)/16. (b) (3+2
√

15+ i
√

3)/16. (c) Complex conjugates.

3.5 (a) 13|A|2. (b) A = 1/
√

13.

3.6 (a) ⟨+|−⟩=
(
1 0
)(0

1

)
= 0, so orthogonal.

(b) ⟨0|+⟩= 1/
√

2 ̸= 0, so not orthogonal.
(c) The inner product is 0, so orthogonal.

3.7 (a) x = (−3+ i
√

3)/8. (b) x = eiθ
√

15/4. (c) none.

3.8

⟨a|b⟩= cos(θa/2)cos(θb/2)+ ei(θb−θa) sin(θa/2)sin(θb/2)
= cos(θa/2)cos(θb/2)− sin(θa/2)sin(θb/2)
= cos((θa +θb)/2) = cos(π/2) = 0.

3.9 (a) (
√

3− i)/2
√

2. (b) (
√

3+ i)/2
√

2. (c) |i⟩ with probability 1/2, |−i⟩ with
probability 1/2. (d) (3− i)/4. (e)

√
3(1− i)/4. (f) |a⟩ with probability 5/8, |b⟩ with

probability 3/8.

3.10 (a) |0⟩ with probability 3/4 and |1⟩ with probability 1/4. (b) |+⟩ with proba-
bility 1/8 and |−⟩with probability 7/8. (c) |i⟩with probability (4+

√
3)/8≈ 0.717,

|−i⟩ with probability (4−
√

3)/8 = 0.283.

3.11 (a) 1−i√
3
|+⟩− i√

3
|−⟩. (b) 1−3i

2
√

3
|i⟩+ 1−i

2
√

3
|−i⟩.

3.12 (a) U = 1√
2

(
1 −i
−i 1

)
. (b) 1√

2

(
α− iβ
−iα +β

)
. (c) Yes, the total probability is∣∣∣α−iβ√

2

∣∣∣2 + ∣∣∣−iα+β√
2

∣∣∣2 = 1.

3.13 (a) U = 1
2
√

3

(
3+ i 1− i
−(1+ i) 3− i

)
. (b) See https://bit.ly/3qR5HnR. |0⟩ with

probability 83.3%, |1⟩ with probability 16.7%.

3.14 1√
2

(
1 −1
1 1

)
.

3.15

https://bit.ly/3qR5HnR
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HTU |0⟩= 1√
2

(
1 1
1 −1

)(
1 0
0 eiπ/4

)
1
2

(√
2− i 1
−1

√
2+ i

)(
1
0

)
=

1
2
√

2

(√
2− i− eiπ/4
√

2− i+ eiπ/4

)
.

3.16 (a) XY |0⟩= i|0⟩, iZ|0⟩= i|0⟩. XY |1⟩=−i|1⟩, iZ|1⟩=−i|1⟩. (b)

XY =

(
1 0
0 1

)(
0 −i
i 0

)
=

(
i 0
0 −i

)
, iZ = i

(
1 0
0 −1

)
=

(
i 0
0 −i

)
.

3.17 U†U =

(
1 i
−i 1

)
̸= I, so no.

3.18 U†U = I, so yes. U |0⟩= |i⟩, and U |1⟩= |−i⟩.

3.19 (a)

U−1 =U† =

(
1+
√

3
2
√

2
− i 1−

√
3

2
√

6
−1+

√
3

2
√

6
− i 1−

√
3

2
√

6
1−
√

3
2
√

6
− i 1−

√
3

2
√

6
1+
√

3
2
√

2
− i−1+

√
3

2
√

6

)

(b) |ψ⟩=
√

3
2 |0⟩+

1
2 |1⟩.

3.20 (a) 1
2

(
1 −1
i −i

)
. (b) No, not unitary.

3.21 (a) 1√
2

(
1 1
1 −1

)
. (b) Yes, it is unitary.

3.22
1√
2

(
1
1

)
1√
2

(
1 1
)
+

1√
2

(
1
−1

)
1√
2

(
1 −1

)
=

(
1 0
0 1

)
.

3.23 (
1
0

)(
1 0
)
+

1√
2

(
1
1

)
1√
2

(
1 1
)
=

1
2

(
3 1
1 1

)
.

Exercises of Chapter 4

4.1 (a) When the other player is on ONE. (b) To planet Phi Minus. (c) When the
blue player uses an H engine card.

4.2 (a) 5. (b) Conceptual. (c) 50-60%. (d) Entanglement.

4.3 (a) 0. (b) −1/2. (c) 0.

4.4 |1⟩⊗ |1⟩⊗ |0⟩=
(

0
1

)
⊗
(

0
1

)
⊗
(

1
0

)
.
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4.5 (a) |ψ⟩=


1/2

0
i/
√

2
(
√

3+ i)/4

. (b) ⟨ψ|=
(
1/2 0 −i/

√
2 (
√

3− i)/4
)
.

4.6 
1
0
0
0

(1 0 0 0
)
+


0
1
0
0

(0 1 0 0
)
+


0
0
1
0

(0 0 1 0
)
+


0
0
0
1

(0 0 0 1
)

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

4.7 |00⟩ with probability 1/10, |01⟩ with probability 1/2, |10⟩ with probability
1/10, or |11⟩ with probability 3/10.

4.8 A = 2/
√

17.

4.9 1√
5
|00⟩+ 2√

5
|01⟩ with probability 5/16 or 2

√
2√

11
|10⟩+

√
3
11 |11⟩ with probability

11/16.

4.10 (|000⟩+
√

6|010⟩)/
√

7 with probability 7/36, (
√

2|001⟩+3|011⟩)/
√

11 with
probability 11/36, (|100⟩ + |110⟩)/

√
2 with probability 1/18, or (|101⟩ +√

3|111⟩)/2 with probability 4/9.

4.11 (a) Entangled state. (b) Product state. |1⟩⊗ 1√
2
(|0⟩+ i|1⟩) = |1⟩⊗ |i⟩.

4.12 (a) Product state.
(√

3
2 |0⟩+

1
2 |1⟩

)
⊗
(√

3
2 |0⟩−

1
2 |1⟩

)
. (b) Entangled state.

4.13 (a) (X⊗ I)|Ψ+⟩= (I⊗X)|Ψ+⟩= |Φ+⟩.
(b) (X⊗ I)|Φ+⟩= (I⊗X)|Φ+⟩= |Ψ+⟩.
(c) (X⊗ I)|Ψ−⟩=−|Φ−⟩ ≡ |Φ−⟩, (I⊗X)|Ψ−⟩= |Φ−⟩.
(d) (X⊗ I)|Φ−⟩=−|Ψ−⟩ ≡ |Φ−⟩, (I⊗X)|Φ−⟩= |Ψ−⟩.

4.14 (a) 1√
2


0 1 0 1
1 0 1 0
0 1 0 −1
1 0 −1 0

 . (b) 2+
√

3
4
√

2
|00⟩+ 4+

√
2

8 |01⟩+ 2−
√

3
4
√

2
+
√

2−4
8 |11⟩.

4.15 (a)


0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

. (b)


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

. (c)


1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0

. (d)


1 0 0 0
0 −1 0 0
0 0 0 −1
0 0 1 0

.
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4.16 (a)
A B C A′ B′ C′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 1 0
1 1 1 1 1 1

.

(b) It is the same.

4.17 As matrices, both circuits are equal to


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

.

4.18 CNOT|+⟩|−⟩= |−⟩|−⟩, CNOT|−⟩|+⟩= |−⟩|+⟩, CNOT|−⟩|−⟩= |+⟩|−⟩.

4.19

1√
2


1
0
0
1

 1√
2

(
1 0 0 1

)
+

1√
2


1
0
0
−1

 1√
2

(
1 0 0 −1

)
+

1√
2


0
1
1
0

 1√
2

(
0 1 1 0

)

+
1√
2


0
1
−1
0

 1√
2

(
0 1 −1 0

)
=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

4.20 CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

.

4.21 (a) SWAP|ω0⟩ = |ω3⟩. (b) (X ⊗ I)|ω1⟩ = |ω3⟩. (c) CNOT01|ω2⟩ = |ω0⟩. (d)
CNOT|ω3⟩= |ω2⟩.

4.22 (a) MS = 1√
2


1 0 0 i
0 1 −i 0
0 −i 1 0
i 0 0 1

. (b) MS8 = I.



Answers to Exercises 365

4.23



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


.

4.24 (a) |000⟩ → |001⟩, |001⟩ → |000⟩, and everything else stays the same.

(b)



0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

4.25 (a) Yes, since they are orthogonal. (b) Yes, since they are orthogonal. (c) No,
since they are not orthogonal.

4.26 See https://bit.ly/30LBtIi:

4.27 See https://bit.ly/30BByOi:

https://bit.ly/30LBtIi
https://bit.ly/30BByOi
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4.28 (a) After all the carries, but before the CNOT, the bottom four qubits are
c′3, a3, a3⊕ b3, and s4. Taking the CNOT of c′3 and a3⊕ b3 changes the target to
s3 = a3⊕b3⊕ c′3.
(b) The number of C gates is n, and the number of C† gates is (n−1). Both C and C†

each have two Toffoli gates, so there is a total of 2n+2(n−1) = 4n−2 Toffoli gates.
The C and C† gates each have one CNOT gate, and the n−1 S gates each have two
CNOT gates, plus the extra CNOT, for a total of n+(n−1)+2(n−1)+1 = 4n−2
CNOT gates.

4.29 The final state should be |s⟩|b⟩ = |1010⟩|0011⟩. The circuit can be viewed in
Quirk at https://bit.ly/3omghlU, and a picture is below:

4.30 (a) 14 Toffoli gates and 16 CNOT gates. (b) 30 Toffoli gates and 32 CNOT
gates.

4.31 3n+1.

4.32 (a) Tom Wong, the author of the textbook. (b) hands, quantum, some, no faster.

4.33 (a) Missing complex amplitudes.
(b) Cannot generate entanglement (no 2-qubit gates).
(c) Cannot generate entanglement. SWAP is 2-qubit, but cannot generate entangle-
ment.

4.34 Possible answers are replacing CNOT with Toffoli, H with Rπ/8, or S with T .

4.35

https://bit.ly/3omghlU
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|ψ00⟩= α|000⟩+β |100⟩
CNOT2,1−−−−−→ α|000⟩+β |110⟩

CNOT2,0−−−−−→ α|000⟩+β |111⟩.

4.36 (a) Nothing. (b) Apply X to the rightmost qubit. (c) Apply X to the leftmost
qubit. (d) Apply X to the middle qubit.

4.37

|ψ00⟩= α|000⟩+β |100⟩
CNOT2,1−−−−−→ α|000⟩+β |110⟩

CNOT2,0−−−−−→ α|000⟩+β |111⟩
H⊗3
−−→ α|+++⟩+β |−−−⟩.

4.38 (a) |0++⟩. (b) |1−+⟩. (c) |1+−⟩. (d) |0−−⟩. (e) It outputs 0 when there is
an even number of |−⟩’s, and outputs 1 when there is an odd number of |−⟩’s.

4.39 In the top row, the Hadamard gate can be moved to the end of the circuit. In
the next row, H2 = I, so we can remove the Hadamard gates in the middle. In the
next row, we can move the Hadamard gate to the beginning of the circuit.

4.40 (a) Probability 1−ε2, and the resulting state is α|+++⟩+β |−−−⟩, so there
is no error to correct.
(b) Probability ε2, and the resulting state is α|−++⟩ − β |+−−⟩, so we apply
Z⊗ I⊗ I to get α|+++⟩−β |−−−⟩, then X⊗ I⊗ I to get α|+++⟩+β |−−−⟩.
(c) Probability zero.
(d) Probability zero.

4.41 (a)

|ψ00000000⟩= α|000000000⟩+β |100000000⟩
CNOT8;5,2−−−−−−→ α|000000000⟩+β |100100100⟩

(b)

H8,H5,H2−−−−−→ α|+⟩|00⟩|+⟩|00⟩|+⟩|00⟩+β |−⟩|00⟩|−⟩|00⟩|−⟩|00⟩

= α
1√
2
(|0⟩+ |1⟩) |00⟩ 1√

2
(|0⟩+ |1⟩) |00⟩ 1√

2
(|0⟩+ |1⟩) |00⟩

+β
1√
2
(|000⟩− |100⟩) 1√

2
(|000⟩− |100⟩) 1√

2
(|000⟩− |100⟩)

=
α√

2
(|000⟩+ |100⟩)(|000⟩+ |100⟩)(|000⟩+ |100⟩)

+
β√

2
(|000⟩− |100⟩)(|000⟩− |100⟩)(|000⟩− |100⟩)
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(c)

CNOTs−−−−→ α√
2
(|000⟩+ |111⟩)(|000⟩+ |111⟩)(|000⟩+ |111⟩)

+
β√

2
(|000⟩− |111⟩)(|000⟩− |111⟩)(|000⟩− |111⟩)

= α|0L⟩+β |1L⟩.

4.42 Qubits q6, q5, and q1 flipped. Correct by applying an X gate to each one.

4.43 See https://bit.ly/3wvdGrI:

4.44 Answers vary.

4.45 See https://bit.ly/309WJXu:

4.46 (a) Qubits |q7⟩, |q3⟩, and |q1⟩ flipped. Fix by applying the X gate to each one.
(b) Triplet0 has a phase flip. Fix by applying a Z gate to any one of |q2⟩, |q1⟩, or
|q0⟩.

Exercises of Chapter 5

5.1 Answers vary.

5.2 All 1024 times, the output should be 111.

https://bit.ly/3wvdGrI
https://bit.ly/309WJXu


Answers to Exercises 369

5.3 (a) U2(0,π). (b) U1(−π/4). (c) U3(θ ,−π/2,π/2).
(d)

gate cz a,b
{

h b;
cx a,b;
h b;

}

(e)

gate ccx a,b,c
{
h c;
cx b,c;
tdg c;
cx a,c;
t c;
cx b,c;
tdg c;
cx a,c;
t b;
t c;
h c;
cx a,b;
t a;
tdg b;
cx a,b;

}

5.4 (a)

OPENQASM 2.0;
include "qelib1.inc";

qreg q[3];
creg c[3];

h q[2];
cx q[2], q[1];
cx q[0], q[1];
h q[0];
cx q[1], q[2];
cz q[0], q[2];

measure q -> c;

(b)

(c) |000⟩, |001⟩, |010⟩, or |011⟩, each with probability 1/4.

5.5 Answers vary.
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Exercises of Chapter 6

6.1 Answers vary.

6.2 |0⟩ with probability 1/2, and the state collapses to
√

3
2 |00⟩ + 1

2 |01⟩ =
|0⟩
(√

3
2 |0⟩+

1
2 |1⟩

)
. |1⟩ with probability 1/2, and the state collapses to 1

2 |10⟩+
√

3
2 |11⟩= |1⟩

(
1
2 |0⟩+

√
3

2 |1⟩
)

. Partially entangled.

6.3 |0⟩ with probability 1/2, and the state collapses to |01⟩. |1⟩ with probability
1/2, and the state collapses to |10⟩. Maximally entangled.

6.4 (a) right now. (b) space, space.

6.5 (a)

HT HS
1√

4+2
√

2

[
(1+
√

2)|0⟩+ |1⟩
]
=

1+
√

2+ i√
4+2

√
2
|0⟩= eiθ |0⟩,

where θ = tan−1
(

1
1+
√

2

)
,

HT HS
1√

4−2
√

2

[
(1−
√

2)|0⟩+ |1⟩
]
=

1−
√

2+ i√
4−2

√
2
|1⟩= eiθ |1⟩,

where θ = π− tan−1
(

1+
√

2
)
.

(b)

HT †HS
1√

4+2
√

2

[
(−1−

√
2)|0⟩+ |1⟩

]
=
−1−

√
2+ i√

4+2
√

2
|0⟩= eiθ |0⟩,

where θ = π + tan−1
(

1−
√

2
)
,

HT †HS
1√

4−2
√

2

[
(−1+

√
2)|0⟩+ |1⟩

]
=
−1+

√
2+ i√

4−2
√

2
|1⟩= eiθ |1⟩,

where θ = tan−1
(

1+
√

2
)
.

6.6 (a) 2−
√

2
8 . (b) 2+

√
2

8 . (c) 2+
√

2
8 . (d) 2−

√
2

8 . (e) −1√
2
.

6.7 (a) photons. (b) −2 ≤ S ≤ 2. (c) S = 2.70± 0.05. (d) S = 2.697± 0.015. (e)
disagree.

6.8 (a) electron. (b) detection loophole. (c) 1.3 kilometers. (d) CHSH-Bell inequal-
ity, S≤ 2. (e) 2.42±0.20. (f) 0.039.

6.9 1√
2
(|++⟩+ |−−⟩).
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6.10 (a) realism. (b) superposition. (c) incomplete, hidden variables. (d) locality,
Locality, speed of light. (e) entangled pair, instantly, local hidden variables (f) forces
(g) hidden variables, Nothing, no correlation (h) defined values, spooky action (i)
Bell inequalities, (j) violated, faster than (k) local hidden variables (l) realism, lo-
cality (m) consistent, information (n) Copenhagen

6.11 (b) |000⟩ or |111⟩, each with probability 1/2.
(c) No. |000⟩ and |111⟩ are product states.

6.12 (b) 1√
2
(|001⟩+ |010⟩) with probability 2/3 or |100⟩ with probability 1/3.

(c) 1√
2
(|001⟩+ |010⟩) = |0⟩|Ψ+⟩, so there is entanglement between the right two

qubits. |100⟩ is not entangled.

6.13 ⟨Φ+|Φ+⟩= 1, ⟨Φ+|Ψ+⟩= 0, ⟨Φ+|Φ−⟩= 0, ⟨Φ+|Ψ−⟩= 0, ⟨Ψ+|Ψ+⟩= 1,
⟨Ψ+|Φ−⟩= 0, ⟨Ψ+|Ψ−⟩= 0, ⟨Φ−|Φ−⟩= 1, ⟨Φ−|Ψ−⟩= 0, ⟨Ψ−|Ψ−⟩= 1.

6.14 (a) 4. (b) 2. (c) 4.

6.15 (a) |11⟩. (b) Answers vary. (c) In the middle section, instead of applying X and
Z, Alice simply applies X .

6.16 (b)

|00⟩ with probability 1/4, collapses to |00⟩(β |0⟩+α|1⟩) ,
|01⟩ with probability 1/4, collapses to |01⟩(α|0⟩+β |1⟩) ,
|10⟩ with probability 1/4, collapses to |10⟩(−β |0⟩+α|1⟩) ,
|11⟩ with probability 1/4, collapses to |11⟩(α|0⟩−β |1⟩) .

(c)

|00⟩(β |0⟩+α|1⟩) , X gate
|01⟩(α|0⟩+β |1⟩) , nothing
|10⟩(−β |0⟩+α|1⟩) , X then Z gates
|11⟩(α|0⟩−β |1⟩) . Z gate.

6.17 (b)

|000⟩ with probability 1/4, collapses to |000⟩(α|0⟩+β |1⟩) ,
|010⟩ with probability 1/4, collapses to |010⟩(β |0⟩+α|1⟩) ,
|100⟩ with probability 1/4, collapses to |100⟩(α|0⟩−β |1⟩) ,
|110⟩ with probability 1/4, collapses to |110⟩(−β |0⟩+α|1⟩) .

(c)

|000⟩(α|0⟩+β |1⟩) , nothing
|010⟩(β |0⟩+α|1⟩) , X gate
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|100⟩(α|0⟩−β |1⟩) , Z gate
|110⟩(−β |0⟩+α|1⟩) , X then Z gates.

6.18 (b)

|00⟩ with probability 1/4, collapses to |00⟩(α|00⟩+β |11⟩) ,
|01⟩ with probability 1/4, collapses to |01⟩(β |00⟩+α|11⟩) ,
|10⟩ with probability 1/4, collapses to |10⟩(α|00⟩−β |11⟩) ,
|11⟩ with probability 1/4, collapses to |11⟩(−β |00⟩+α|11⟩) .

(d)

|000⟩(α|0⟩+β |1⟩) , nothing
|001⟩(α|0⟩−β |1⟩) , Z gate
|010⟩(β |0⟩+α|1⟩) , X gate
|011⟩(β |0⟩−α|1⟩) , Z then X

|100⟩(α|0⟩+β |1⟩) , nothing
|101⟩(α|0⟩−β |1⟩) , Z gate
|110⟩(−β |0⟩+α|1⟩) , X then Z gates
|111⟩(−β |0⟩−α|1⟩) , Z then X then Z gates.

6.19 1000011 1101000 1100001 1110010 1101100 1101001 1100101 = Charlie.

6.20 (a) 3. (b) 1.

6.21 (a) 7493. (b) Any e satisfying gcd(e,7308) = 1. (c) d = e−1 mod 7308.

6.22 1679734.

6.23 1501096.

6.24 (a) 330 bits, 1991. (b) As of this writing, RSA 250, 829 bits, 2020. (c)
$200,000.

6.25 |−⟩, |+⟩, |0⟩, |1⟩, |0⟩, |+⟩, |+⟩, |−⟩, |−⟩.

6.26 0011.

6.27 log0.75(0.01) = 16.
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Exercises of Chapter 7

7.1 (a)
x y x y⊕ f (x)
0 0 0 1
0 1 0 0
1 0 1 0
1 1 1 1

(b) Yes, since the outputs are unique. (c)

U f =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

.

(d) U†
f U f = I.

7.2 (a) f (0) = 1:

(b) f (1) = 0:

7.3
(√

3
2 |0⟩+

1
2 |1⟩

)
|−⟩ =

√
3

2
√

2
(|0⟩|0⟩− |0⟩|1⟩) + 1

2
√

2
(|1⟩|0⟩− |1⟩|1⟩)

U f−→
√

3
2
√

2
(|0⟩|0⊕ f (0)⟩− |0⟩|1⊕ f (0)⟩) + 1

2
√

2
(|1⟩|0⊕ f (1)⟩− |1⟩|1⊕ f (1)⟩)

=
√

3
2 (−1) f (0)|0⟩|−⟩+ 1

2 (−1) f (1)|1⟩|−⟩=
(√

3
2 (−1) f (0)|0⟩+ 1

2 (−1) f (1)|1⟩
)
|−⟩.

7.4 (a) |x⟩|+⟩. (b) |x⟩|+⟩. (c) They are equal to the initial state, so the oracle does
nothing to |x⟩|+⟩.

7.5 (a) The parity is 0 or even. See https://bit.ly/3s9rmsa:

(b) b0 = 1. (c) b1 = 1. (d) b0⊕b1 = 0. (e) 2.

7.6 (a) The parity is 1 or odd.

(b) Answers vary.

7.7 |0⟩ with probability 1/2 or |1⟩ with probability 1/2.

7.8 (a) 1 or odd. (b) Four queries. (c) 8.

https://bit.ly/3s9rmsa
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7.9 (a) 0 or even. (b) Five queries. (c) 9.

7.10 (a) 0.015625. (b) 0.0078125. (c) c = 11.

7.11 (H ⊗H ⊗H)|000⟩ = |+++⟩ = (|000⟩+ |001⟩+ |010⟩+ |011⟩+ |100⟩+
|101⟩+ |110⟩+ |111⟩)/23/2. Get one of the basis states |000⟩, |001⟩, |010⟩, |011⟩,
|100⟩, |101⟩, |110⟩, or |111⟩, each with probability 1/8.

7.12 (a) See https://bit.ly/3nwbFFS:

This yields |100⟩, so the function is balanced.
(b)

b2 b1 b0 f (b0,b1,b2)

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(c) Balanced. (d) 5.

7.13 (a) See https://ibm.co/3yykVjK:

This yields |000⟩, so the function is constant. (b) Answers vary.

7.14 (a) See https://bit.ly/3m30FS6:

https://bit.ly/3nwbFFS
https://ibm.co/3yykVjK
https://bit.ly/3m30FS6
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s = 100101. (b) Set |y⟩ = |0⟩. Then, |y⊕ f (b5, . . . ,b0)⟩ = | f (b5, . . . ,b0)⟩. Get s0 =
f (000001) = 1,s1 = f (000010) = 0,s2 = f (000100) = 1,s3 = f (001000) = 0,s4 =
f (010000) = 0,s5 = f (100000) = 1. (c) 6.

7.15 (a) See https://ibm.co/3m0WPZB:

s = 1101. (b) Answers vary.

7.16

x (s+ y) · x (−1)(s+y)·x

000 0 1
001 1 -1
010 0 1
011 1 -1
100 0 1
101 1 -1
110 0 1
111 1 -1

∑
x
(−1)(s+y)·x: 0

7.17 (a) The x,y pairs are 000 and 010, 001 and 011, 100 and 110, and 101 and 111.
(b) There are many different possible truth tables for f (x) that satisfies f (x) = f (y).
One is:

https://ibm.co/3m0WPZB
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x y
000 100
001 101
010 100
011 101
100 011
101 000
110 011
111 000

7.18 s = 1100.

7.19 (a) 0.706316. (b) 0.891232. (c) 0.970374. (d) 0.994123.

7.20 s = 110.

7.21 (a) 128. (b) 8001/8192 = 0.977.

7.22 Geometrically, the initial angle is θ = sin−1(1/
√

N) = sin−1(1/2) = π/6.
Applying RsU f to this adds 2θ to this, resulting in 3θ = π/2, which is perfectly
aligned with |w⟩.

7.23 (a) 1/N. (b) 9/N−24/N2 +16/N3.

7.24 (a) 4. (b) 16. (c) 3. (d) See https://bit.ly/3E3WnzZ:

https://bit.ly/3E3WnzZ
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w = 1011.
(e)

x f (x)
0000 0
0001 0
0010 0
0011 0
0100 0
0101 0
0110 0
0111 0
1000 0
1001 0
1010 0
1011 1
1100 0
1101 0
1110 0
1111 0

7.25 (a) 5. (b) 32. (c) 4. (d,e,f) See https://bit.ly/3q4ExrK

w = 10110.

7.26 φ0 = 0.567,φ1 = 0.35+0.833i,φ2 = 0.415,φ3 = 0.35−0.833i.

7.27 (a) G4. (b) 440 Hz.

7.28 (a)

https://bit.ly/3q4ExrK
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(b) 196 Hz, 247 Hz, 294 Hz. (c) G3, B3, D4.

7.29 (a) Mrs is row r of QFT† multiplied component-by-component with column
s of QFT, then added together. (ω p)∗ = ω−p, so QFT† is the same matrix as QFT,
except with negative powers. Then, ignoring the overall factor of 1/

√
N, the rth row

of QFT† has terms ω−0r = 1, ω−1r, ω−2r, . . . , ω−(N−1)r. Similarly, the sth column
of QFT has terms ω0s = 1, ω−1s, ω−2s, . . . , ω−(N−1)s, again ignoring the overall
factor of 1/

√
N. Thus,

Mrs =
1
N

(
ω
−0r

ω
0s +ω

−1r
ω

1s +ω
−2r

ω
2s + · · ·+ω

−(N−1)r
ω

(N−1)s
)

=
1
N

N−1

∑
k=0

ω
−kr

ω
ks =

1
N

N−1

∑
k=0

ω
k(s−r).

(b) If r = s,

Mrs =
1
N

N−1

∑
k=0

ω
0 =

1
N

N−1

∑
k=0

1 =
1
N
(1+ · · ·+1)︸ ︷︷ ︸

N times

=
1
N

N = 1.

(c) If r ̸= s, then c = s− r is a nonzero integer, and M is a geometric series with
common ratio ωc, i.e.,

M =
N−1

∑
k=0

(ωc)k =
1
N

[
1+ω

c +(ωc)2 +(ωc)3 + · · ·+(ωc)N−1] .
Using the closed-form formula for a geometric series,

M =
1
N

1−ωNc

1−ωc =
1√
N

1− (e2πi/N)Nc

1−ωc =
1√
N

1− e2πic

1−ωc =
1√
N

1−1
1−ωc = 0.

7.30 See https://bit.ly/2ZgKfxr.

https://bit.ly/2ZgKfxr
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7.31

The Hadamard gate on q2 can be swapped with the P(π/8) gate, so the circuit is
equivalent to the textbook’s.

7.32 See https://bit.ly/3nJIPoB:

7.33
# Number of qubits.
n = 4

# Create a quantum circuit.
qc = QuantumCircuit(n)

# Swap qubits.
for qubit in range(n//2):

qc.swap(qubit, n - qubit - 1)

# Iterate through each target qubit from 0 to (n-1).
for target in range(n):

# Iterate through the control qubits from 0 to (target-1).
for control in range(target):

# Calculate "r," the rotation by -2*pi/2**r.
r = target - control + 1

# Apply the controlled phase/rotation.
qc.cp(-2*np.pi/2**r, control, target)

# Apply the Hadamard gate.

https://bit.ly/3nJIPoB
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qc.h(target)

# Draw the circuit.
qc.draw()

7.34 (a) H
(

1+
√

2
1

)
=

(
1+
√

2
1

)
. (b) H

(
1+
√

2
1

)
=−

(
1+
√

2
1

)
.

7.35 U


2+ i√
2+1
1
1

= eiπ/4


2+ i√
2+1
1
1

.

7.36 (a,b) See https://tinyurl.com/emcnnxfk:

(c) 0.00011101. (d) 0.1133. (e) 0.7118. (f) e0.7118i = 0.7572+0.6532i. (g) We only
estimated j to eight binary places, and the actual value may need more bits.

7.37 3/8, 1/2, 1/8.

7.38 (a) gcd(4,5) = 1. (b) 1, 4, 1, 4. (c) 1, 4. (d) 2.

7.39 (a) gcd(4,13) = 1. (b) 1, 4, 3, 12, 9, 10, 1, 4, 3, 12, 9, 10. (c) 1, 4, 3, 12, 9, 10.
(d) 6.

7.40 49 mod 131.

7.41 33 mod 197.

https://tinyurl.com/emcnnxfk
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7.42 (a) 0.3438= [0,2,1,9,1,18,1,1,1,2]. (b) Its convergents are 0, 1/2, 1/3, 10/29,
11/32, 208/605, 219/637, 427/1242, 646/1879, 1719/5000. (c) Best s/r is 1/3, so
s = 1 and r = 3. (d) 33 mod 7 = 6 mod 7. (e) Not the period.

(a) 0.5 = [0,1]. (b) Its convergents are 0, 1/2. (c) Best s/r is 1/2, so s = 1 and
r = 2. (d) 32 mod 7 = 2 mod 7. (e) Not the period.

(a) 0.6562 = [0,1,1,1,9,1,18,1,1,1,2]. (b) Its convergents are 0, 1, 1/2, 2/3,
19/29, 21/32, 397/605, 418/637, 815/1242, 1233/1879, 3281/5000. (c) Best s/r is
2/3, so s = 2 and r = 3. (d) 33 mod 7 = 6 mod 7. (e) Not the period.

(a) 0.8438 = [0,1,5,2,2,19,8]. (b) Its convergents are 0, 1, 5/6, 11/13, 27/32,
524/621, 4219/5000. (c) Best s/r is 5/6, so s = 5 and r = 6. (d) 36 mod 71 mod 7.
(e) The period.

7.43 See https://bit.ly/31E6M8h:

Probability Binary Approx. of s/r Decimal Approx. of s/r Guess of s/r 7r mod 13

33.3974% |00000⟩ 0 N/A N/A
5.7377% |01010⟩ 0.3125 1/3 1

22.8399% |01011⟩ 0.3438 1/3 1
22.8399% |10101⟩ 0.6562 2/3 1
5.7377% |10110⟩ 0.6875 2/3 1

The period is r = 3.

7.44 See https://bit.ly/3y1rmLX:

https://bit.ly/31E6M8h
https://bit.ly/3y1rmLX
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Probability Binary Approx. of s/r Decimal Approx. of s/r Guess of s/r 2r mod 15

25% |00000000⟩ 0 N/A N/A
25% |01000000⟩ 0.25 1/4 1
25% |10000000⟩ 0.5 1/2 4
25% |11000000⟩ 0.75 3/4 1

The period is r = 4.

7.45 Answers vary.

7.46 (a) gcd(22,209) = 11. (b) p = 11, q = 209/11 = 19.
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Symbols

≡ (equivalent to) 93
∃ 59
∀ 59
⊺ 116
¬ 12
∋ 59
⊕ 14
ψ 92
† 116
#P (complexity class) 69

A

adder
quantum see quantum adder
ripple-carry see ripple-carry adder

Advanced Encryption Standard see AES
AES 263
Agrawal–Kayal–Saxena (AKS) 61
always 0 gate 12
always 1 gate 12
Amazon 236
amplitude 84
ancilla bits 171
AND gate 13, 45
answer qubit 275
anti-controlled-NOT gate 159
anti-Toffoli gate 48
ASCII 9
asymptotic notation 58

big-O notation 58
big-Omega notation 59
big-Theta notation 59
little-o notation 59
little-omega notation 59

atomic force microscope 5
azimuthal angle 94

B

balanced function 281
base 16 numbers see hexadecimal
base 2 numbers see binary numbers
basis 86
basis-changing gate 187
Bell basis 158, 256
Bell measurement 256
Bell states 158
Bell test 241
Bernstein-Vazirani algorithm 288
big endian 141
big-O notation see asymptotic notation
big-Omega notation see asymptotic notation
big-Theta notation see asymptotic notation
bin packing problem 61
binary numbers 7
binary point 315
binary search 298
binary strings see binary numbers
binomial coefficient see combination
birthday problem 293
bit 6

coin 5
optical discs 5
switch 5
voltage 6

bit flip error 189
bit strings see binary numbers
black box see oracle
Bloch ball 347
Bloch sphere 74
Bohmian mechanics see pilot wave theory
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boolean algebra 38
order of operations 38

boson sampling 69
BPP (complexity class) 283
BQP (complexity class) 69, 141
bra see also bra-ket notation
bra-ket notation 74, 116

bra 116
bra-ket 118
ket 74

Braket 236
brute-force searching 298
buffer gate 12

C

Cartesian coordinates 95
Cartesian form 80
CCNOT gate see Toffoli gate
Chinese remainder theorem 266
CHSH inequality 244
Church-Turing Thesis 67
ciphertext 262
circuit complexity 273
circuit diagram 11
circuit identity 108, 129, 156
Cirq 236
Clifford group 185
clone 165
CNOT gate 153
cochlea 307
codeword 54
coin 2
cold atoms 97
collapse 85
collision 292
Colossus 20
column vector see vector
combination 56
complete orthonormal basis 135
completeness 135
completeness (complexity) 61
completeness relation 135
complex conjugate 82
complex number 80
complex plane 80
complexity class 61
component 80
computer algebra system see also

Mathematica, see also SageMath, 56
concatenation 202
conjugate see complex conjugate
conjugate transpose 116
constant function 281

continued fractions 337
control qubit 154
controlled-controlled-NOT gate see Toffoli

gate
controlled-Hadamard gate 187
controlled-U 160
convergent 338
coprime see relatively prime
csv file 312
CX gate see CNOT gate

D

de Broglie-Bohm theory see pilot wave
theory

De Morgan’s Laws 40
decode 4
decoherence 190
density matrix 254
Deutsch’s algorithm 278
Deutsch-Jozsa algorithm 283
die, dice 3
Dirac notation see bra-ket notation
discrete Fourier transform 308
dot product 118, 285, 287
Draper’s adder 181
dual 117

E

eardrum 307
easy problems 60
efficient (complexity) 60, 274
eigenstate 322
eigenvalue 321
eigenvector 321
encode 4
encryption 262
entangled state 149
entanglement 139, 149

measure 239
monogamy 254

Entanglion 137, 149, 153, 154, 158, 162
EPR pairs see Bell states
EPR paradox 240
EPR states see Bell states
error syndrome 54, 191
error-correcting code 55
error-detecting code 54
Euclid’s algorithm 264
Euler’s formula 81
Eve 262
exclusive OR see XOR gate
exponential time 60
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F

factoring 61, 68, 341
faster-than-light communication see

no-signaling principle
fault tolerant 205
field-programmable gate array (FPGA) 29
Fourier transform see discrete Fourier

transform
Fredkin gate 46
frequency spectrum 309
full adder 28, 32
function 48

G

Gale-Shapley algorithm 61
generator 185
GHZ state 213, 254
global phase 91
Google 236
Gottesman-Knill theorem 185
graph isomorphism 61
Grover’s algorithm 299

H

Hadamard gate 105
half adder 28, 29
halting problem 67, 69
Hamiltonian path problem 61
hard problems 60
hardware description language 27, 29
head 63
hexadecimal 8
hidden variable 240
Holevo’s theorem 256
HTML 9

I

IBM Quantum 209
IBM Quantum Experience

standard header 221
identity gate 11, 102
inefficient (complexity) 60
information 4
information-theoretically secure 263
inner product 118
input qubit 275
inverse quantum Fourier transform 320
inverter gate 12
invertible matrix see reversible matrix
ion 97

IQFT see inverse quantum Fourier transform
irreversible gate 45

J

Josephson junction 97

K

ket see bra-ket notation
key length 264
Kronecker product 142

L

least significant bit 7
linear algebra 115
linear combination 110
linear operator 99
linear programming 61
little endian 140
little-o notation see asymptotic notation
little-omega notation see asymptotic

notation
locality 240
logic gate 11

always 0 gate 12
always 1 gate 12
AND gate 13
identity gate 11
NAND gate 14
negative-AND gate 15
negative-OR gate 15
NOR gate 14
NOT gate 12
OR gate 13
XOR gate 13

logical bit 54
lower bound 59

M

magneto-optical trap 97
many-worlds interpretation 251
mask 291
Mathematica 56, 57, 122, 128, 130, 151,

244, 264–267, 293, 312, 338, 339
matrix 124
matrix multiplication 130
matrix-vector multiplication 124
maximally entangled 238
metric 187
Microsoft 236
mixed state 347
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model of computation 63
modular exponentiation 327
modular multiplication 332
modulo 14
modulus 266, 327
monogamous see entanglement
most significant bit 7
Mølmer-Sørensen gate 163

N

NAND gate 14
negative battery terminal 16
negative OR gate 15
negative-AND gate 15
NISQ see noisy intermediate-scale quantum
nitrogen-vacancy center 97
no-cloning theorem 166
no-signaling principle 251
noisy intermediate-scale quantum 209
NOR gate 14
norm 82
norm-square 82
normalization constant 85
normalized 85
NOT gate 12, 44, 102
NP (complexity class) 61
NP-complete 61
nuclear magnetic resonance 97
number field sieve 341
number theory 328

O

one-time pad 263
OpenQASM 219
optical lattice 97
OR gate 13
oracle 274
oracle separation 275
order see period
order finding 328
orthogonal 119
ossicle 307
outer product 133
overlap 123

P

P (complexity class) 61, 141
parallel computing 184
parameterization 92
parity 22, 54, 67
parity bit 54

partially entangled 239
Pauli gates

X gate 102
Y gate 103
Z gate 103

period 328
period finding 328
phase estimation 322
phase flip error 190
phase gate 104
phase kickback 277
phase oracle 277
photon 97
pilot wave theory 251
plaintext 262
polar angle 94
polar form 80
polarization 97
polylog 187
positive battery terminal 16
post-quantum cryptography 344
postprocessing 325
postselection 204
primality testing 61
prime number 61, 264
principle of deferred measurement 194
product state 147
projection 123
public-key cryptography 263
pure state 347
PyQuil 236
Pythagorean identity 82
Pythagorean theorem 81
Python 228

Q

Q# 236
QASM 219
QFT see quantum Fourier transform
QIS 228
Qiskit 228
quantum adder 183
quantum annealing 348
quantum approximate optimization algorithm

(QAOA) 348
quantum circuit diagram 111
quantum computational supremacy 69, 209
quantum dot 97
quantum Fourier transform 181, 314
quantum gate 98
quantum key distribution 269
quantum network 271
quantum parallelism 184
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quantum state tomography 257
quantum supremacy see quantum

computational supremacy
quantum teleportation 259
quantum walk 348
qubit 74

physical 97
touchdown 73

Qubit Touchdown 73, 78, 85, 102
query 274
query complexity 274
Quil 236
Quirk 111, 126, 127, 129, 140, 151, 152,

155, 157, 161, 164, 171, 173, 180, 181,
183, 193, 195, 199, 203, 206, 259, 276,
280, 286, 289, 302, 306, 319, 321, 326,
335, 341

R

random circuit sampling 68
realism 240
rectangular form see Cartesian form
register 30, 64

classical 30
quantum 172

relative phase 77, 91
relatively prime 264, 328
relay 20
repetition code 54
reversible gate 44
reversible matrix 132
RGB color model 9
Rigetti 236
ripple-carry adder 28, 35, 167
row vector see vector
RSA 68
RSA cryptosystem 263
RSA Factoring Challenge 269

S

S gate see phase gate
Sage see SageMath
SageMath 56, 57, 122, 129, 130, 152, 244,

264–267, 293, 313, 338, 339
sampling 308
scalar 118
scalar product see inner product
Schrödinger’s equation 348
searching problem 298
seed 215
semiconductor 97
Shor code 190, 201

Shor’s algorithm 68, 267, 341
Shor, Peter 201, 341
Simon’s algorithm 294
simply separable see product state
single event upset 52
software development kit (SDK) 228
solid state 20
sound 306
spherical coordinates 94
spin 97
stable marriage problem 61
state 2
Strong Church-Turing Thesis 68, 341
subexponential time 60
Sudoku 61
superconductor 97
superluminal communication see no-

signaling principle
superpolynomial 290
superpolynomial time 60
superposition 76
swap gate 161

T

T gate 105
taking the dual 117
tape 63
target qubit 154, see answer qubit
tensor product 140
three pole switch 19
time 60
Toffoli gate 46, 163

decomposition 164
topology 212
transistor 20
transpile 216
trapped ions 97
traveling salesman problem 61
triad 313
truth table 11
Tsirelson’s inequality 246
Turing machine 63

components 63
non-deterministic 61
probabilistic 68

two’s complement 9

U

uncomputation 171
uncorrectable error 55
undecidable problem 67
unitary matrix 99, 132
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universal gate 25
universal gate set 23, 185
upper bound 58

V

vacuum tube 20
vector

column vector 115
length 115
row vector 116

Verilog 27, 29
VHDL 29

W

W state 254
waveform 307
wire 11

wormhole 251

X

X gate see Pauli gates
X-basis 86
XOR 154
XOR gate 13
XOR mask 291

Y

Y gate see Pauli gates
Y-basis 86

Z

Z gate see Pauli gates
Z-basis 86
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